Render Target: SSR
Render Timestamp: 2025-01-09T19:57:59.045Z
Commit: 199712eb9daea12d88cc0e67894a8a09f475f8cb
XML generation date: 2024-12-06 01:01:09.713
Product last modified at: 2025-01-01T09:03:45.453Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Antibody Sampler Kit
PDP - Template ID: *******4a3ef3a

Tau Mouse Model Neuronal Viability IF Antibody Sampler Kit #56511

    Product Information

    Product Description

    The Tau Mouse Model Neuronal Viability IF Antibody Sampler Kit provides an economical means of detecting proteins to confirm neuronal viability and surrounding astrocytes and microglia in mouse models by immunofluorescence.

    Specificity / Sensitivity

    Each antibody in the Tau Mouse Model Neuronal Viability IF Antibody Sampler Kit detects endogenous levels of its target protein. Tau (D1M9X) XP® Rabbit mAb recognizes endogenous levels of total Tau protein. Phospho-Tau (Thr205) (E7D3E) Rabbit mAb recognizes endogenous levels of tau protein only when phosphorylated at Thr205. Cleaved PARP (Asp214) (D6X6X) Rabbit mAb recognizes endogenous levels of the large fragment (89 kDa) of PARP protein only when cleaved at Asp214. HS1 (D5A9) XP® Rabbit mAb (Rodent Specific) does not recognize human HS1 protein. HS1 has a calculated size of 54 kDa, but has an apparent molecular weight of 80 kDa on SDS-PAGE gels. Cleaved Caspase-3 (Asp175) Antibody detects endogenous levels of the large fragment (17/19 kDa) of activated caspase-3 resulting from cleavage adjacent to Asp175. This antibody does not recognize full length caspase-3 or other cleaved caspases. This antibody detects non-specific caspase substrates by western blot. Non-specific labeling may be observed by immunofluorescence in specific sub-types of healthy cells in fixed-frozen tissues (e.g. pancreatic alpha-cells). Nuclear background may be observed in rat and monkey samples.

    Source / Purification

    Monoclonal and polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gln53 of human PSD95, Asp430 of human Tau, Asp214 of rodent PARP1, Leu310 of mouse HS1, aminoterminal residues adjacent to Asp175 of human caspase-3, a phosphopeptide surrounding Thr205 of human tau, recombinant protein specific to the carboxy terminus of human SYP, the amino terminus of human NeuN, and native GFAP purified from pig spinal cord.

    Background

    Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Neurofibrillary tangles are a major pathological hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau, including phosphorylation of tau at Thr205 (1,2). Research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3). Neuronal nuclei (NeuN, Fox-3, RBFOX3) is a nuclear protein expressed in most post-mitotic neurons of the central and peripheral nervous systems. NeuN is not detected in Purkinje cells, sympathetic ganglion cells, Cajal-Retzius cells, INL retinal cells, inferior olivary, or dentate nucleus neurons (4). Glial fibrillary acidic protein (GFAP) is the main intermediate filament in mature brain astroglial and radial glial cells. GFAP plays an important role in modulating astroglial motility and shape (5). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (6). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 to be a useful and specific tool to study microglia (7). Synaptophysin (SYP) is a neuronal synaptic vesicle glycoprotein that occurs in presynaptic vesicles of neurons (8). Postsynaptic density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (9,10). Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, including nuclear enzyme poly (ADP-ribose) polymerase (PARP) (11). PARP, a 116 kDa nuclear poly (ADP-ribose) polymerase, appears to be involved in DNA repair in response to environmental stress (12). PARP helps cells to maintain their viability; cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis (13).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.