Extracellular Matrix Dynamics Antibody Sampler Kit #63387
Product Information
Kit Usage Information
Protocols
- 7074: Western Blotting
- 8725: Western Blotting, Immunohistochemistry (Paraffin)
- 14479: Western Blotting, Immunofluorescence*, Flow
- 20302: Western Blotting, Immunoprecipitation (Magnetic), Immunohistochemistry (Paraffin)
- 26836: Western Blotting, Immunoprecipitation (Agarose), Immunohistochemistry (Leica® Bond™), Immunohistochemistry (Paraffin), Immunofluorescence
- 33352: Western Blotting, Immunoprecipitation (Agarose), Immunofluorescence
- 37879: Western Blotting, Immunoprecipitation (Magnetic)
- 50273: Western Blotting
- 63034: Western Blotting, Immunohistochemistry (Paraffin)
- 72026: Western Blotting, Immunohistochemistry (Leica® Bond™), Immunohistochemistry (Paraffin), Immunofluorescence, Immunofluorescence
Product Description
The Extracellular Matrix Dynamics Antibody Sampler Kit provides an economical means of detecting selected proteins associated with dynamic remodeling of the extracellular matrix. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.
Specificity / Sensitivity
Each antibody in the Extracellular Matrix Dynamics Antibody Sampler Kit detects endogenous levels of its target protein. Periostin (E5F2S) Rabbit mAb recognizes endogenous levels of total human periostin protein. The antibody also weakly detects a 40 kDa protein of unknown identity.
Source / Purification
Monoclonal antibodies are produced by immunizing animals with recombinant proteins specific to the carboxy terminus of human Tenascin C protein and human Fibronectin/FN1 protein; with synthetic peptides corresponding to residues surrounding Phe1197 of human COL1A1 protein, Ser395 of human periostin protein, and Pro171 of human CYR61 protein, the amino terminus of human thrombospondin-1 protein and human SPARC protein, and the carboxy terminus of human COL3A1 protein. Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Asp536 of human COL4A1 protein. Antibodies are purified by peptide affinity chromatography.
Background
The extracellular matrix (ECM) is a three-dimensional macromolecular network composed of collagens, proteoglycans, glycosaminoglycans, elastin, fibronectin, laminins, along with many other proteins and glycoproteins. This network of macromolecules provides a dynamic microenvironment that supports cell and tissue function, and undergoes continuous remodeling during both normal development and disease (1). Remodeling of the ECM can alter the relative balance of macromolecules within distinct ECM subcompartments, with important functional consequences; for example, changes to the relative amounts of COL1A1 and COL3A1 in the interstitial ECM, or COL4A1 and laminins in the basement membrane, can influence cell-matrix interactions, and/or disrupt cellular signaling events (2). Fibronectin functions as a physical and functional bridge between many different ECM components, including collagens, growth factors, and cell surface integrins, and thus plays a critical role in facilitating ECM remodeling. Matricellular proteins (MCPs) are another important group of ECM proteins. MCPs can be categorized into 6 distinct subgroups: centralized coordination network (CCN), thrombospondin (THBS), secreted protein acidic and rich in cysteine (SPARC), tenascin (TN), small integrin-binding ligand N-linked glycoprotein (SIBLING), and γ-carboxyglutamate (Gla)-containing proteins. CCN1 (CYR61), SPARC, tenascin C, periostin, and thrombospondin-1 are among the most well-studied of this group. All are non-structural ECM proteins that interact with structural ECM proteins, in part to regulate the rigidity of the ECM. They also play important roles in matrix-cell communication by engaging with cell surface receptors and integrins to elicit intracellular responses. The dysregulation of MCP expression has been associated with the development of numerous disease states, including cancer and fibrosis (4,5).
- Bonnans, C. et al. (2014) Nat Rev Mol Cell Biol 15, 786-801.
- Theocharis, A.D. et al. (2019) FEBS J 286, 2830-2869.
- Zollinger, A.J. and Smith, M.L. (2017) Matrix Biol 60-61, 27-37.
- Gerarduzzi, C. et al. (2020) Cancer Res 80, 2705-2717.
- Feng, D. and Gerarduzzi, C. (2020) Int J Mol Sci 21, 4776. doi: 10.3390/ijms21134776.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.