Death Receptor Antibody Sampler Kit #8356
Product Information
Kit Usage Information
Protocols
- 2782: Western Blotting
- 3493: Western Blotting, Immunoprecipitation (Agarose), Immunofluorescence, Flow
- 3684: Western Blotting, Immunoprecipitation (Agarose)
- 3736: Western Blotting, Immunoprecipitation (Magnetic)
- 4233: Western Blotting, Immunohistochemistry (Paraffin)
- 4758: Western Blotting
- 7074: Western Blotting
- 8049: Western Blotting, Immunoprecipitation (Magnetic)
- 8074: Western Blotting, Immunoprecipitation (Agarose), Immunofluorescence
- 72337: Western Blotting, Immunoprecipitation (Magnetic), Flow Cytometry Live Cell Unconjugated Rabbit
Product Description
The Death Receptor Antibody Sampler Kit provides an economical means to investigate the machinery of death receptor-mediated apoptosis. The kit includes enough of each primary antibody to perform two western mini-blot experiments per primary.
Specificity / Sensitivity
Each antibody in the Death Receptor Antibody Sampler Kit recognizes endogenous levels of the respective target protein. The TNF-R1, DR5, and RIP antibodies do not cross-react with other related family members. TNF-R1 (C25C1) Rabbit mAb may recognize a 30 kDa splice isoform of TNF-R1 in some cell lines.
Source / Purification
Monoclonal antibodies are produced by immunizing animals with synthetic peptides corresponding to residues surrounding Lys259 of human Fas protein, Ser331 of human TNF-R1 protein, Arg260 of human DR5 protein, Gly227 of human TRADD protein, Leu190 of human RIP protein, or Gly270 of human DcR2 protein. Monoclonal antibody is produced by immunizing animals with recombinant protein specific to the amino terminus of human TNF-R2 protein.
Polyclonal antibodies are produced by immunizing animals
with synthetic peptides corresponding to residues surrounding Ser194 of human FADD protein, or near the amino
terminus of human DcR3 protein. Polyclonal antibodies are
purified by protein A and peptide affinity chromatography.
Polyclonal antibodies are produced by immunizing animals
with synthetic peptides corresponding to residues surrounding Ser194 of human FADD protein, or near the amino
terminus of human DcR3 protein. Polyclonal antibodies are
purified by protein A and peptide affinity chromatography.
Background
The tumor necrosis factor receptor family, which includes TNF-RI, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC) resulting in activation of caspases. Death receptor signaling is also controlled by a family of decoy receptors (DcR1, DcR2, and DcR3) which lack a cytoplasmic DD and inhibit death receptor-mediated apoptosis by competing for ligand (3-5). The RIP (receptor-interacting protein) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that can trigger pro-survival and inflammatory responses through the activation of NF-κB as well as pro-apoptotic pathways (6). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and for the recruitment to TNFR1 through interaction with TRADD (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (7,8). Caspase-8 dependent cleavage of the death domain on RIP can trigger the apoptotic activity of RIP (9). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (10,11).
- Nagata, S. (1997) Cell 88, 355-65.
- Thorburn, A. (2004) Cell Signal 16, 139-44.
- Sheridan, J.P. et al. (1997) Science 277, 818-21.
- Marsters, S.A. et al. (1997) Curr Biol 7, 1003-6.
- Pitti, R.M. et al. (1998) Nature 396, 699-703.
- Meylan, E. and Tschopp, J. (2005) Trends Biochem Sci 30, 151-9.
- Hsu, H. et al. (1996) Immunity 4, 387-96.
- Stanger, B.Z. et al. (1995) Cell 81, 513-23.
- Lin, Y. et al. (1999) Genes Dev 13, 2514-26.
- Ting, A.T. et al. (1996) EMBO J 15, 6189-96.
- Kelliher, M.A. et al. (1998) Immunity 8, 297-303.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.