Render Target: SSR
Render Timestamp: 2025-01-09T19:22:23.846Z
Commit: 199712eb9daea12d88cc0e67894a8a09f475f8cb
XML generation date: 2024-05-10 06:26:38.097
Product last modified at: 2025-01-01T09:02:26.904Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Antibody Duet
PDP - Template ID: *******ad0fa02

PhosphoPlus® Atg14 (Ser29) Antibody Duet #69501

    Product Information

    Product Description

    PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

    Background

    Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes. These proteins are involved in the formation of autophagosomes, cytoplasmic vacuoles that are delivered to lysosomes for degradation. The class III type phosphoinositide 3-kinase (PI3K) Vps34 regulates vacuolar trafficking and autophagy (4,5). Multiple proteins associate with Vps34, including p105/Vps15, Beclin-1, UVRAG, Atg14, and Rubicon, to determine Vps34 function (6-12). Atg14 and Rubicon were identified based on their ability to bind to Beclin-1 and participate in unique complexes with opposing functions (9-12). Rubicon, which localizes to the endosome and lysosome, inhibits Vps34 lipid kinase activity; knockdown of Rubicon enhances autophagy and endocytic trafficking (11,12). In contrast, Atg14 localizes to autophagosomes, isolation membranes and ER, and can enhance Vps34 activity. Knockdown of Atg14 inhibits starvation-induced autophagy (11,12).

    The serine/threonine kinase ULK1 phosphorylates Atg14 at Ser29 to promote autophagosome formation (13).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    PhosphoPlus is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.