Render Target: SSR
Render Timestamp: 2024-12-26T19:27:59.742Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-20 06:21:51.915
Product last modified at: 2024-09-25T14:45:08.298Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Antibody Sampler Kit
PDP - Template ID: *******4a3ef3a

Phospho-PKC Antibody Sampler Kit #9921

    Product Information

    Product Description

    The Phospho-PKC Antibody Sampler Kit provides a fast and economical means of evaluating multiple PKC isoforms and their phosphorylation state. The kit contains enough primary and secondary antibodies to perform two Western blot experiments.

    Specificity / Sensitivity

    Phospho-PKC (pan) (βII Ser660) Antibody detects PKCα, β I, β II, δ, ε and η isoforms only when phosphorylated at a carboxy-terminal residue homologous to Ser660 of PKCβ II. Phospho-PKCδ (Ser643) Antibody detects PKC δ when phosphorylated at Ser643, and PKCθ when phosphorylated at Ser676. PKD/PKCμ (D4J1N) Rabbit mAb detects endogenous levels of PKD/PKCμ only. All other phospho-PKC antibodies recognize only their specific isoform when phosphorylated at the indicated sites.

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human PKD. Polyclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to the sequence of the human protein PKCβ II, PKCα, PKCδ, PKCθ, or PKCζ . Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.