Render Target: SSR
Render Timestamp:
3/27/2025, 2:21:01 PM EDT
3/27/2025, 6:21:01 PM UTC
Commit: 461ca8d8fe5b1efd4c01fc87e5b5eb592e2d154a
XML generation date: 2025-03-07 13:14:08.881
Product last modified at: 2025-01-01T09:01:33.404Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Antibody Sampler Kit
PDP - Template ID: *******4a3ef3a

Notch Receptor Interaction Antibody Sampler Kit #8658

    Product Information

    Product Description

    The Notch Receptor Interaction Antibody Sampler Kit provides an economical means to evaluate Notch signaling. The kit contains enough primary antibody to perform two western blots per primary.

    Background

    Notch signaling is activated upon engagement of the Notch receptor with its ligands, the Delta, Serrate, Lag2 (DSL) single-pass type I membrane proteins. DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3, and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a similiar manner, suggesting bi-directional signaling through receptor-ligand interactions (4-6).

    TNF-α converting enzyme (TACE), also known as ADAM17, is a transmembrane metalloprotease that plays a key role in the cleavage of a number cell surface molecules in a process known as “shedding". TACE is abundantly expressed in many adult tissues, but in fetal development, expression is differentially regulated (7). TACE activates Notch in a ligand-independent manner and has been shown to play a role in the development of the Drosophila nervous system (8).

    Recombining Binding Protein, SUppressor of Hairless (RBPSUH), also termed RBP-J or CSL, is the DNA-binding component of the transcription complex regulated by canonical Notch signaling. In the absence of Notch activation, RBPSUH suppresses target gene expression through interactions with a co-repressor complex containing histone deacetylase. Upon activation of Notch receptors, the Notch intracellular domain (NICD) translocates to the nucleus and binds to RBPSUH. This displaces the co-repressor complex and replaces it with a transcription activation complex that includes Mastermind-like (MAML) proteins and histone acetylase p300, leading to transcriptional activation of Notch target genes (9-11).

    Numb contains an amino-terminal phosphotyrosine-binding (PTB) domain and carboxy-terminal endocytic binding motifs for α-adaptin and EH (Eps15 homology) domain-containing proteins, indicating a role in endocytosis (12,13). There are four mammalian Numb splicing isoforms that are differentially expressed and may have distinct functions (14-16). Numb acts as a negative regulator of Notch signaling by promoting ubiquitination and degradation of Notch (17). The protein is asymmetrically segregated into one daughter cell during cell division, producing two daughter cells with different responses to Notch signaling and different cell fates (18,19).
    1. Wilson, A. and Radtke, F. (2006) FEBS Lett 580, 2860-8.
    2. Hansson, E.M. et al. (2004) Semin Cancer Biol 14, 320-8.
    3. Chiba, S. (2006) Stem Cells 24, 2437-47.
    4. Bland, C.E. et al. (2003) J Biol Chem 278, 13607-10.
    5. Six, E. et al. (2003) Proc Natl Acad Sci U S A 100, 7638-43.
    6. LaVoie, M.J. and Selkoe, D.J. (2003) J Biol Chem 278, 34427-37.
    7. Black, R.A. et al. (1997) Nature 385, 729-33.
    8. Delwig, A. and Rand, M.D. (2008) Cell Mol Life Sci 65, 2232-43.
    9. Ehebauer, M. et al. (2006) Sci STKE 2006, cm7.
    10. Borggrefe, T. and Oswald, F. (2009) Cell Mol Life Sci 66, 1631-46.
    11. Kopan, R. and Ilagan, M.X. (2009) Cell 137, 216-33.
    12. Berdnik, D. et al. (2002) Dev Cell 3, 221-31.
    13. Santolini, E. et al. (2000) J Cell Biol 151, 1345-52.
    14. Dho, S.E. et al. (1999) J Biol Chem 274, 33097-104.
    15. Verdi, J.M. et al. (1999) Proc Natl Acad Sci U S A 96, 10472-6.
    16. Verdi, J.M. et al. (1999) Proc Natl Acad Sci U S A 96, 10472-6.
    17. McGill, M.A. and McGlade, C.J. (2003) J Biol Chem 278, 23196-203.
    18. Verdi, J.M. et al. (1996) Curr Biol 6, 1134-45.
    19. Reugels, A.M. et al. (2006) Dev Dyn 235, 934-48.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.