IRAK Isoform Antibody Sampler Kit #4769
Product Information
Kit Usage Information
Protocols
- 4363: Western Blotting, Immunoprecipitation (Agarose)
- 4367: Western Blotting
- 4369: Western Blotting
- 4504: Western Blotting, Immunoprecipitation (Agarose), Flow
- 7074: Western Blotting
Product Description
The IRAK Isoform Antibody Sampler Kit provides an economical means to examine total protein levels of the four Interleukin-1 Receptor Associated Kinase family members: IRAK1, IRAK2, IRAK3/IRAK-M, and IRAK4.
Specificity / Sensitivity
Each antibody in the IRAK Isoform Antibody Sampler Kit detects endogenous levels of its indicated target. Cross-reactivity has not been detected with other family members at endogenous levels.
Source / Purification
Antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy-terminus of murine IRAK1, human IRAK2, human IRAK-M, and surrounding Lys41 of human IRAK4.
Background
Interleukin-1 (IL-1) receptor-associated kinase (IRAK) is a serine/threonine-specific kinase that can be coprecipitated in an IL-1-inducible manner with the IL-1 receptor (1). The mammalian family of IRAK molecules contains four members (IRAK1, IRAK2, IRAK3/IRAK-M, and IRAK4). The binding of IL-1 to IL-1 receptor type I (IL-1RI) initiates the formation of a complex that includes IL-1RI, AcP, MyD88, and IRAKs (2). IRAK undergoes autophosphorylation shortly after IL-1 stimulation. The subsequent events involve IRAK dissociation from the IL-1RI complex, its ubiquitination, and its association with two membrane-bound proteins: TAB2 and TRAF6. The resulting IRAK-TRAF6-TAB2 complex is then released into the cytoplasm where it activates protein kinase cascades, including TAK1, IKKs, and the stress-activated kinases (3).
Upon IL-1R/TLR (Toll-Like Receptor) ligation, IRAK1 and IRAK4 are rapidly recruited to the receptor by the adaptor MyD88 (4). IRAK1 is phosphorylated by IRAK4 at Thr209 and Thr387 (5), followed by sequential autohyperphosphorylation in various domains. Unlike IRAK1 and IRAK4, IRAK2 and IRAK-M do not have significant kinase activity although they can still activate NF-κB when overexpressed (6,7). Antisense oligonucleotide depletion of IRAK2 can inhibit IL-1 mediated NF-κB activation (8). Expression of IRAK-M is more restricted compared to other family members with highest levels of expression occurring in monocytes/macrophages (6). Studies from IRAK-M knockout mice suggest that it may play a role as a negative regulator of TLR signaling and innate immune responses by preventing the dissociation of IRAK1 and IRAK4 from MyD88 and the subsequent formation of its complex with TRAF6 (9).
Upon IL-1R/TLR (Toll-Like Receptor) ligation, IRAK1 and IRAK4 are rapidly recruited to the receptor by the adaptor MyD88 (4). IRAK1 is phosphorylated by IRAK4 at Thr209 and Thr387 (5), followed by sequential autohyperphosphorylation in various domains. Unlike IRAK1 and IRAK4, IRAK2 and IRAK-M do not have significant kinase activity although they can still activate NF-κB when overexpressed (6,7). Antisense oligonucleotide depletion of IRAK2 can inhibit IL-1 mediated NF-κB activation (8). Expression of IRAK-M is more restricted compared to other family members with highest levels of expression occurring in monocytes/macrophages (6). Studies from IRAK-M knockout mice suggest that it may play a role as a negative regulator of TLR signaling and innate immune responses by preventing the dissociation of IRAK1 and IRAK4 from MyD88 and the subsequent formation of its complex with TRAF6 (9).
- Dinarello, C.A. (1996) Blood 87, 2095-147.
- Takaesu, G. et al. (2001) Mol Cell Biol 21, 2475-84.
- Janssens, S. and Beyaert, R. (2003) Mol Cell 11, 293-302.
- Gottipati, S. et al. (2008) Cell Signal 20, 269-76.
- Kollewe, C. et al. (2004) J Biol Chem 279, 5227-36.
- Wesche, H. et al. (1999) J Biol Chem 274, 19403-10.
- Muzio, M. et al. (1997) Science 278, 1612-5.
- Guo, F. et al. (1999) Inflammation 23, 535-43.
- Kobayashi, K. et al. (2002) Cell 110, 191-202.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.