Human Reactive Inflammasome Antibody Sampler Kit II #25620
Product Information
Kit Usage Information
Protocols
- 3866: Western Blotting, Immunoprecipitation (Agarose)
- 4199: Western Blotting, Immunoprecipitation (Magnetic)
- 7074: Western Blotting
- 12421: Western Blotting, Immunoprecipitation (Agarose)
- 12703: Western Blotting, Immunofluorescence, Flow
- 12948: Western Blotting, Immunoprecipitation (Agarose)
- 13833: Western Blotting, Immunoprecipitation (Agarose), Immunohistochemistry (Paraffin)
- 15101: Western Blotting, Immunoprecipitation (Agarose)
- 83186: Western Blotting, Immunofluorescence
Product Description
The Human Reactive Inflammasome Antibody Sampler Kit II provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.
Specificity / Sensitivity
Each antibody in the Human Reactive Inflammasome Antibody Sampler Kit II detects endogenous levels of its target protein. AIM2 (D5X7K) Rabbit mAb detects a 22 kDa band of unknown origin in some cell lines. Caspase-1 (D7F10) Rabbit mAb detects endogenous levels of full-length human Caspase-1; the activated p20 subunit was detected by overexpression. ASC/TMS1 (E1E3I) Rabbit mAb can detect three known isoforms of ASC/TMS1. Cleaved Caspase-1 (Asp297) (D57A2) Rabbit mAb detects endogenous levels of the p20 subunit of human caspase-1 only upon cleavage at Asp297. Cleaved-IL-1β (Asp116) (D3A3Z) Rabbit mAb recognizes endogenous levels of mature IL-1β protein only when cleaved at Asp116. IL-1β (D3U3E) Rabbit mAb is not able to detect endogenous levels of mature IL-1β. It can detect up to 100 pg of recombinant mature IL-1β.
Source / Purification
Monoclonal antibodies are produced by immunizing animals with recombinant human IL-1β protein or with synthetic peptides corresponding to residues adjacent to Asp297 human caspase-1, residues adjacent to Asp116 of human IL-1β, residues surrounding Ala306 of mouse NLRP3, Lys93 of human AIM2, Leu942 of human NLRC4, and the carboxy terminus of human ASC/TMS1 isoform 1.
Background
The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.
- Broz, P. and Dixit, V.M. (2016) Nat Rev Immunol 16, 407-20.
- Guo, H. et al. (2015) Nat Med 21, 677-87.
- Jo, E.K. et al. (2016) Cell Mol Immunol 13, 148-59.
- Rathinam, V.A. and Fitzgerald, K.A. (2016) Cell 165, 792-800.
- Shao, B.Z. et al. (2015) Front Pharmacol 6, 262.
- Schroder, K. and Tschopp, J. (2010) Cell 140, 821-32.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.