Render Target: SSR
Render Timestamp: 2025-02-05T07:54:27.364Z
Commit: 1bba917eefc12d62e72a522121e2774ffbd0ee36
XML generation date: 2025-01-28 23:04:30.740
Product last modified at: 2025-01-29T09:00:11.949Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Oligo Antibody Pair
PDP - Template ID: *******46423d7

Neutrophil Elastase (E8U3X) & CO-0137-647 SignalStar Oligo-Antibody Pair #66179

Filter:
  • IHC

Order Information # 66179

This product is not sold separately. Please see the SignalStar™ Multiplex IHC Panel Builder Tool for ordering information.

    Product Information

    Product Usage Information

    Application Dilution
    SignalStar™ Leica Bond 1:50 - 1:200
    SignalStar™ Manual 1:50 - 1:200

    Storage

    SignalStar conjugates are supplied in PBS (pH 7.2), less than 0.1% sodium azide, 2 mM EDTA, 0.05% Triton X-100, 2 mg/mL BSA, and 50% glycerol. Complementary oligos are supplied in nuclease-free water. Store at -20°C. Do not aliquot the antibody. All components in this kit are stable for at least 12 months when stored at the recommended temperature.

    Product Description

    SignalStar multiplex immunohistochemistry (IHC) is an advanced technology for labeling multiple proteins simultaneously in tissue samples using specific primary antibodies and fluorescent detection reagents. This technology offers accuracy and reliability in visualizing and analyzing protein expression while maintaining spatial context and tissue architecture.

    SignalStar Oligo-Antibody Pairs are compatible with the SignalStar Multiplex IHC Buffer Kits for use in fluorescent multiplex imaging experiments. This product includes the oligo-conjugated antibodies and complementary oligos required for labeling your target protein on up to 10 slides. SignalStar Multiplex IHC Buffer Kits are required to amplify and image the target signal. Multiple oligo-antibody pairs can be conveniently combined into a multiplex panel using the SignalStar Multiplex IHC Panel Builder. SignalStar Multiplex IHC Kits & Reagents are not compatible with all of Cell Signaling Technology® products and protocols that are recommended for use in immunohistochemical assays.

    Protocol

    Specificity / Sensitivity

    Neutrophil Elastase (E8U3X) Rabbit mAb (SignalStar™ Conjugate 0137) recognizes endogenous levels of total neutrophil elastase protein. This antibody does not cross-react with human neutrophil elastase protein. Non-specific staining was observed in the vas deferens by immunohistochemistry.

    Species Reactivity:

    Mouse

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with full-length recombinant protein specific to mouse neutrophil elastase protein.

    Background

    Neutrophil elastase is a hematopoietic serine protease that belongs to the chymotrypsin superfamily and plays a critical role in the innate immune function of mature neutrophils and monocytes (1,2). Neutrophil elastase is actively synthesized as an inactive zymogen in myelocytic precursor cells of the bone marrow, which then undergoes activation by limited proteolysis and sorting to primary (azurophil) storage granules of mature neutrophil granulocytes for regulated release (3,4). Research studies have shown that neutrophils play a significant role in mediating the inflammatory response through the release of neutrophil elastase, which activates pro-inflammatory cytokines and degrades components of the extracellular matrix and Gram-negative bacteria (5). Mutations in the gene encoding neutrophil elastase, ELA2, have been implicated in hematological diseases such as cyclic and severe congenital neutropenia, which is characterized by defects in promyelocyte maturation (6,7).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    SignalStar is a trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 10,781,477, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.