Render Target: SSR
Render Timestamp:
3/27/2025, 2:36:34 PM EDT
3/27/2025, 6:36:34 PM UTC
Commit: 461ca8d8fe5b1efd4c01fc87e5b5eb592e2d154a
XML generation date: 2025-03-07 13:07:23.304
Product last modified at: 2025-02-19T13:45:17.904Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

XPA (D9U5U) Rabbit mAb #14607

Filter:
  • WB

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 40
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    XPA (D9U5U) Rabbit mAb recognizes endogenous levels of total XPA protein.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Arg158 of human XPA protein.

    Background

    Nucleotide excision repair (NER) is a process by which cells identify and repair DNA lesions that result from chemical and radiation exposure (1). The DNA binding protein XPA is an essential part of a pre-incision complex that forms at sites of damage, and is necessary for the initiation of nucleotide excision repair (2). XPA is one of eight NER proteins (XPA-G, XPV) encoded by genes that are defective in cases of xeroderma pigmentosum, a disorder characterized by sensitivity to sunlight, predisposition to exposed tissue cancers, and neurological defects in some patients (3). Activation of XPA follows phosphorylation at Ser196 and results in increased NER activity. Phosphorylation of XPA at Ser196 is induced by UV exposure in an ATR-dependant fashion (4) and promotes nuclear accumulation of XPA (5). Research studies suggest that XPA may be a direct substrate of the serine/threonine kinase ATR (4) and that NER activity may be negatively regulated through dephosphorylation of Ser196 by the phosphatase WIP1 (6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.