Render Target: SSR
Render Timestamp: 2024-11-14T23:07:18.563Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-08-01 15:27:29.128
Product last modified at: 2024-10-30T13:15:14.831Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

TMOD1 (E7E3A) XP® Rabbit mAb #65647

Filter:
  • WB
  • IP
  • IHC

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 45
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IHC-Immunohistochemistry 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunohistochemistry (Paraffin) 1:2560

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    TMOD1 (E7E3A) XP® Rabbit mAb recognizes endogenous levels of total TMOD1 protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Val106 of human TMOD1 protein.

    Background

    Tropomodulin-1 (TMOD1) belongs to a conserved family of cytoskeletal proteins (TMOD1-4) that play an important role in modulating actin cytoskeleton dynamics. TMOD proteins function as actin capping proteins, which stabilize actin filaments by inhibiting both elongation and depolymerization (1). While many proteins have been identified that cap the rapidly growing barbed end of actin filaments, TMODs are the only proteins thus far identified that cap the slowly growing pointed end (2). A research study in triple-negative breast cancer cells identified TMOD1 as a target of NF-κB signaling, and showed that increased TMOD1 expression was associated with enhanced tumor growth in a mouse xenograft model (3). Molecular expression of TMOD1 was also identified as part of a unique gene expression signature that could discriminate ALK-negative anaplastic large-cell lymphoma from other malignancy subtypes (4).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    SignalStain is a registered trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.