Render Target: SSR
Render Timestamp: 2024-12-19T21:42:34.552Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-10-28 20:01:13.871
Product last modified at: 2024-12-17T18:48:03.147Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

SIRPα/SHPS1 (D6I3M) Rabbit mAb #13379

Filter:
  • WB
  • IHC
  • IF
  • F

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 85 (human, monkey), 100 (rat), 120 (murine isoform 1), 55 (murine isoform 2)
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IHC-Immunohistochemistry 
    • IF-Immunofluorescence 
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    IHC Leica Bond 1:50 - 1:200
    Immunohistochemistry (Paraffin) 1:50 - 1:100
    Immunofluorescence (Immunocytochemistry) 1:50 - 1:100
    Flow Cytometry (Fixed/Permeabilized) 1:50 - 1:200

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    For a carrier free (BSA and azide free) version of this product see product #47027.

    Protocol

    Specificity / Sensitivity

    SIRPα/SHPS1 (D6I3M) Rabbit mAb recognizes endogenous levels of total SHPS1 protein. This antibody recognizes both large and small isoforms of murine mSHPS1/SIRPα.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro413 of human SIRPα/SHPS1 protein.

    Background

    SHP-substrate 1 (SHPS1, SIRPα) is a single-pass membrane protein and member of both the immunoglobulin superfamily and the signal regulatory protein (SIRP) family. Following growth hormone stimulation or integrin binding, SHPS1 is phosphorylated at several tyrosine residues within its cytoplasmic tail. These phosphorylation events promote association between SHPS1 and multiple signaling proteins, including SHP-1, SHP-2, Grb2 and Shc via their SH2 domains (1-4). Recruitment of SHP-1 and SHP-2 results in SHPS1 dephosphorylation and suppression of tyrosine kinase signaling (1-3,5). The tyrosine kinase JAK2 associates with SHPS1 via its carboxy terminus and phosphorylates SHPS1 in response to extracellular stimuli (5). Research studies show that Src associates with and may phosphorylate SHPS1 in response to insulin (4). In macrophages, SHPS1 can form a complex with the Src pathway adaptor protein SKAP2, Fyn-binding protein FYB, and the tyrosine kinase PYK2 (6). The SHPS1 extracellular domain contains at least three IgG-like domains that interact with CD47, a ubiquitously expressed, integrin-associated protein that acts as a repressive cue in both immune and neuronal cells (7,8). The interaction between CD47 and SHPS1 on opposing cells can inhibit cellular migration (9), promote "tethering" between macrophages and target cells during engulfment (10), facilitate self versus non-self recognition (11), and maintain immune homeostasis (12). SHPS1 plays a critical role in modulating the immune response and inflammation, and may play a role in neuronal development (13,14). The interaction between SHPS1 and CD47 may be an exploitable target in cancer therapy (15-17).
    1. Kharitonenkov, A. et al. (1997) Nature 386, 181-6.
    2. Ochi, F. et al. (1997) Biochem Biophys Res Commun 239, 483-7.
    3. Takada, T. et al. (1998) J Biol Chem 273, 9234-42.
    4. Shen, X. et al. (2009) Mol Cell Proteomics 8, 1539-51.
    5. Stofega, M.R. et al. (2000) J Biol Chem 275, 28222-9.
    6. Timms, J.F. et al. (1999) Curr Biol 9, 927-30.
    7. Seiffert, M. et al. (1999) Blood 94, 3633-43.
    8. Vernon-Wilson, E.F. et al. (2000) Eur J Immunol 30, 2130-7.
    9. Motegi, S. et al. (2003) EMBO J 22, 2634-44.
    10. Tada, K. et al. (2003) J Immunol 171, 5718-26.
    11. van Beek, E.M. et al. (2005) J Immunol 175, 7781-7.
    12. Legrand, N. et al. (2011) Proc Natl Acad Sci U S A 108, 13224-9.
    13. Sarfati, M. et al. (2008) Curr Drug Targets 9, 842-50.
    14. Matozaki, T. et al. (2009) Trends Cell Biol 19, 72-80.
    15. Hara, K. et al. (2011) Cancer Res 71, 1229-34.
    16. Willingham, S.B. et al. (2012) Proc Natl Acad Sci U S A 109, 6662-7.
    17. Weiskopf, K. et al. (2013) Science 341, 88-91.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.