Render Target: SSR
Render Timestamp: 2024-11-14T23:03:41.482Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-09-30 01:53:17.238
Product last modified at: 2024-09-30T08:02:21.414Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

RNF40 (D2R2O) Rabbit mAb #12187

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 130
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:100

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    RNF40 (D2R2O) Rabbit mAb recognizes endogenous levels of total RNF40 protein. This antibody does not cross-react with RNF20/BRE1A.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Asp537 of human RNF40 protein.

    Background

    In mammalian cells, the significance of histone H2B ubiquitination in chromatin epigenetics came from the identification of the budding yeast protein Bre1 (1,2). Together with the ubiquitin-conjugating enzyme Rad6, Bre1 serves as the E3 ligase in the monoubiquitination of the yeast histone H2B within transcribed regions of chromatin (1-3). Subsequently, the mammalian orthologs of yeast Bre1, RNF20 and RNF40, were identified (4,5). These two proteins form a tight heterodimer that acts as the major E3 ligase responsible for histone H2B monoubiquitination at Lys120 in mammalian cells, a modification linked to RNA Pol II-dependent transcription elongation in undamaged cells. Researchers have shown that DNA double-strand breaks (DSBs) are also capable of inducing monoubiquitination of H2B. This process depends upon the recruitment to DSB sites, as well as ATM-dependent phosphorylation of the RNF20-RNF40 heterodimer, thus highlighting a role for this E3 ligase in DSB repair pathways (6). Indeed, investigators have shown that loss of RNF20-RNF40 function promotes replication stress and chromosomal instability, which may constitute an early step in malignant transformation that precedes cell invasion (7).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.