Render Target: SSR
Render Timestamp: 2024-12-19T21:40:42.632Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-08-01 15:24:41.374
Product last modified at: 2024-08-15T14:15:09.251Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

RMP Antibody #5844

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 79
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    RMP Antibody recognizes endogenous levels of total RMP protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human RMP protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    RMP (RPB5-Mediating Protein), also known as URI (Unconventional prefoldin RBP5 Interactor), was described as an unconventional member of the prefoldin (PFD) family of chaperones that are involved in actin and tubulin folding (1-4). Like conventional members of the α-class of PFDs, RMP contains N- and C-terminal α-helical coiled-coil structures connected by two β hairpins. In addition, RMP possesses an RPB5-binding segment and a long C-terminal acidic segment. It is posited that RMP exists as a component of a macromolecular complex within human cells and functions as a molecular scaffold to assemble a PFD complex containing other PFDs and proteins with functions in transcription and ubiquitination. Indeed, evidence is provided that RMP negatively modulates RNA polymerase II-dependent transcription by binding to TFIIF (5) and RBP5 (6) and is involved in mTOR signaling by coordinating the regulation of nutrient availability with gene expression (1). In accord with its ability to coordinate gene expression with nutrient availability, RMP was shown to be a mitochondrial substrate of S6K1. S6K1-mediated phosphorylation of RMP at Ser371 triggers a series of biochemical events that constitute a negative feedback loop, in part, aimed at restraining S6K1 survival signaling and ensuring that the mitochondrial threshold for apoptosis corresponds to availability of nutrients and growth factors (7).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.