Render Target: SSR
Render Timestamp: 2024-11-14T22:59:43.981Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-09-30 01:53:38.115
Product last modified at: 2024-09-30T15:00:11.179Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Phospho-PFKFB2 (Ser483) (D4R1W) Rabbit mAb #13064

Filter:
  • WB

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 55
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Phospho-PFKFB2 (Ser483) (D4R1W) Rabbit mAb recognizes endogenous levels of PFKFB2 protein only when phosphorylated at Ser483.

    Species Reactivity:

    Human

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser483 of human PFKFB2 protein.

    Background

    The bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK/FBPase or PFKFB) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate and regulates its steady-state level (1,2). Fructose 2,6-bisphosphate activates phosphofructokinase, a rate-limiting enzyme in glycolysis, by allosteric regulation (1,2). Four different PFKFB isoforms (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified (1,2). Research studies indicate that amino acids activate PFKFB2 through Akt-dependent phosphorylation at Ser483 on PFKFB2 (3). In addition, androgen increases the expression of PFKFB2 in prostate cancer cells (4).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.