Render Target: SSR
Render Timestamp: 2024-11-14T22:58:44.791Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-08-09 16:16:08.880
Product last modified at: 2024-08-10T07:00:55.179Z
1% for the planet logo
PDP - Template Name: Matched Antibody Pair
PDP - Template ID: *******446e1e7

Phospho-Insulin Receptor β (Tyr1150/1151) Matched Antibody Pair #86078

Filter:
  • ELISA

    Supporting Data

    REACTIVITY H M
    Application Key:
    • ELISA-ELISA 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Matched Antibody Pairs include capture and detection antibodies to non-overlapping epitopes. Optimal dilutions/concentrations should be determined by the end user.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    Storage

    Store at -20ºC. This product will freeze at -20ºC so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Product Description

    The Phospho-Insulin Receptor β (Tyr1150/1151) Matched Antibody Pair is ideal for use with immunoassay technologies and high-throughput ELISA platforms requiring antibody pairs with specialized or custom antibody labeling. Labels include fluorophores, lanthanides, biotin, and beads. Platforms requiring conjugated Matched Antibody Pairs include MSD, Quanterix Simoa, Alpha Technology (AlphaScreen, AlphaLISA, LANCE, HTRF), and Luminex.

    Learn how Matched Antibody Pairs move your projects forward, faster at cst-science.com/matched-antibody-pairs.

    Background

    Insulin receptor (InsR) is a heterodimeric membrane receptor tyrosine kinase. It is composed of an extracellular α-subunit containing the ligand binding domain, a β-subunit containing an extracellular domain, a transmembrane domain, and a cytoplasmic tyrosine kinase domain (1). Binding of insulin to InsR results in receptor autophosphorylation and subsequent tyrosine kinase activation (2). This provides a docking site for various adaptor molecules, including insulin receptor substrate (IRS), Gab, and Shc, phosphorylation of which promotes subsequent activation of multiple downstream signaling pathways, including MAPK, PI3K, and TC10 (3,4). These events lead to increased glucose uptake and metabolism, and can promote cell growth. Loss-of-function mutation or desensitization of the InsR are two major contributors to insulin resistance and Type 2 diabetes (5).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.