Render Target: SSR
Render Timestamp: 2024-12-14T17:04:00.879Z
Commit: 611277b6de3cd1bb065350b6ef8d63df412b7185
XML generation date: 2024-09-20 06:21:14.078
Product last modified at: 2024-05-30T07:03:17.876Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: IHC Kit
PDP - Template ID: *******35f95d7

PD-L1, FoxP3, CD8α Multiplex IHC Antibody Panel #78701

Inquiry Info. # 78701

Please see our recommended alternatives.

    Product Information

    Product Description

    The PD-L1, FoxP3, CD8α Multiplex IHC Antibody Panel enables researchers to simultaneously detect these targets in paraffin-embedded tissues using tyramide signal amplification. Each antibody in the panel has been validated for this approach. For recommended staining conditions optimized specifically for this antibody panel please refer to Table 1 on the Data Sheet.

    Specificity / Sensitivity

    Each antibody in this panel recognizes endogenous levels of its specific target protein.

    Source / Purification

    Monoclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human PD-L1 protein, recombinant protein specific to human FoxP3, or a synthetic peptide corresponding to residues near the carboxy terminus of human CD8α protein.

    Background

    The field of cancer immunotherapy is focused on empowering the immune system to fight cancer. This approach has seen recent success in the clinic with targeting immune checkpoint control proteins, such as PD-1 (1,2). Despite this success, clinical biomarkers that predict response to therapeutic strategies involving PD-1 receptor blockade are still under investigation (3-5). While PD-L1 expression has been linked with an increased likelihood of response to anti-PD-1 therapy, research studies have shown that additional factors, such as tumor-immune infiltration and the ratio of effector to regulatory T cells within the tumor, could play a significant role in predicting treatment outcome (6-9).
    Programmed cell death 1 ligand 1 (PD-L1) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses. The PD-L1 ligand binds the PD-1 transmembrane receptor and inhibits T cell activation. PD-L1 is expressed in several tumor types, including melanoma, ovary, colon, lung, breast, and renal cell carcinomas (10-12).
    FoxP3 is a transcription factor that is crucial for the development of T cells with regulatory properties (Treg) (13). Mutations in FoxP3 are associated with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX) (15), while overexpression in mice causes severe immunodeficiency (15). Research studies have shown that FoxP3 functions as a tumor suppressor in several types of cancer (16-18).
    CD8 (Cluster of Differentiation 8) is a disulphide-linked heterodimer consisting of α and β subunits. On T cells, CD8 is the coreceptor for the TCR, and these two distinct structures recognize the Antigen–Major Histocompatibility Complex (MHC). CD8 ensures specificity of the TCR–antigen interaction, prolongs the contact between the T cell and the antigen presenting cell, and the α chain recruits the tyrosine kinase Lck, which is essential for T cell activation (19).
    1. Topalian, S.L. et al. (2012) N Engl J Med 366, 2443-54.
    2. Piccinini, M. et al. (2014) Comput Methods Biomech Biomed Engin 17, 1403-17.
    3. Chakravarti, N. and Prieto, V.G. (2015) Transl Lung Cancer Res 4, 743-51.
    4. Sholl, L.M. et al. (2016) Arch Pathol Lab Med , .
    5. Carbognin, L. et al. (2015) PLoS One 10, e0130142.
    6. Tokito, T. et al. (2016) Eur J Cancer 55, 7-14.
    7. Tumeh, P.C. et al. (2014) Nature 515, 568-71.
    8. Feng, Z. et al. (2015) J Immunother Cancer 3, 47.
    9. Baine, M.K. et al. (2015) Oncotarget 6, 24990-5002.
    10. Dong, H. et al. (2002) Nat Med 8, 793-800.
    11. Thompson, R.H. et al. (2006) Cancer Res 66, 3381-5.
    12. Pardoll, D.M. (2012) Nat Rev Cancer 12, 252-64.
    13. Ochs, H.D. et al. (2007) Immunol Res 38, 112-21.
    14. Bennett, C.L. et al. (2001) Nat Genet 27, 20-1.
    15. Kasprowicz, D.J. et al. (2003) J Immunol 171, 1216-23.
    16. Zuo, T. et al. (2007) Cell 129, 1275-86.
    17. Zuo, T. et al. (2007) J Clin Invest 117, 3765-73.
    18. Wang, L. et al. (2009) Cancer Cell 16, 336-46.
    19. Zamoyska, R. (1994) Immunity 1, 243-6.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    Cy and CyDye are registered trademarks of GE Healthcare.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.