R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.
Na,K-ATPase β1 (D6U8Q) Rabbit mAb #44759
Filter:
- WB
Supporting Data
REACTIVITY | H M R |
SENSITIVITY | Endogenous |
MW (kDa) | 45-55 |
Source/Isotype | Rabbit IgG |
Application Key:
- WB-Western Blotting
Species Cross-Reactivity Key:
- H-Human
- M-Mouse
- R-Rat
Product Information
Product Usage Information
Application | Dilution |
---|---|
Western Blotting | 1:1000 |
Storage
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.
Protocol
Specificity / Sensitivity
Na,K-ATPase β1 (D6U8Q) Rabbit mAb recognizes endogenous levels of total Na,K-ATPase β1 protein.
Species Reactivity:
Human, Mouse, Rat
Source / Purification
Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro200 of human Na,K-ATPase β1 protein.
Background
The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).
Na,K-ATPase β1 is the non-catalytic subunit of Na,K-ATPase. It is required for stabilization, maturation, and translocation of the catalytic α subunit to the plasma membrane(10-12). Na,K-ATPase β1 also mediates the trans-dimerization of Na,K-ATPase between neighboring cells where it regulates the integrity of tight junctions (13-17). Glutathionylation of NA,K-ATPase β1 regulates the ion pump activity of Na,K-ATPase (18). Research studies have shown that Na,K-ATPase β1 is a target of the Sonic Hedgehog signaling pathway and may be involved in suppressing tumor development and progression (19). ATP1B1, the gene encoding Na,K-ATPase β1, is epigenetically silenced by promoter methylation in both renal cell carcinoma cell lines and patient tissues (20).
Na,K-ATPase β1 is the non-catalytic subunit of Na,K-ATPase. It is required for stabilization, maturation, and translocation of the catalytic α subunit to the plasma membrane(10-12). Na,K-ATPase β1 also mediates the trans-dimerization of Na,K-ATPase between neighboring cells where it regulates the integrity of tight junctions (13-17). Glutathionylation of NA,K-ATPase β1 regulates the ion pump activity of Na,K-ATPase (18). Research studies have shown that Na,K-ATPase β1 is a target of the Sonic Hedgehog signaling pathway and may be involved in suppressing tumor development and progression (19). ATP1B1, the gene encoding Na,K-ATPase β1, is epigenetically silenced by promoter methylation in both renal cell carcinoma cell lines and patient tissues (20).
- Therien, A.G. and Blostein, R. (2000) Am J Physiol Cell Physiol 279, C541-66.
- Féraille, E. et al. (1999) Mol Biol Cell 10, 2847-59.
- Fisone, G. et al. (1994) J Biol Chem 269, 9368-73.
- Feschenko, M.S. and Sweadner, K.J. (1995) J Biol Chem 270, 14072-7.
- Beguin, P. et al. (1994) J Biol Chem 269, 24437-45.
- Yingst, D.R. et al. (2004) Am J Physiol Renal Physiol 287, F713-21.
- Al-Khalili, L. et al. (2004) J Biol Chem 279, 25211-8.
- Tian, J. et al. (2006) Mol Biol Cell 17, 317-26.
- Liang, M. et al. (2006) J Biol Chem 281, 19709-19.
- Beggah, A.T. et al. (1997) J Biol Chem 272, 10318-26.
- Hasler, U. et al. (1998) J Biol Chem 273, 30826-35.
- Rajasekaran, S.A. et al. (2004) Mol Biol Cell 15, 3224-32.
- Rajasekaran, S.A. et al. (2001) Mol Biol Cell 12, 3717-32.
- Rajasekaran, A.K. and Rajasekaran, S.A. (2003) Am J Physiol Renal Physiol 285, F388-96.
- Bab-Dinitz, E. et al. (2009) Biochemistry 48, 8684-91.
- Tokhtaeva, E. et al. (2011) J Biol Chem 286, 25801-12.
- Vagin, O. et al. (2012) Am J Physiol Cell Physiol 302, C1271-81.
- Figtree, G.A. et al. (2012) Free Radic Biol Med 53, 2263-8.
- Lee, S.J. et al. (2015) Mol Cancer 14, 159.
- Selvakumar, P. et al. (2014) Epigenetics 9, 579-86.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.