MEF2D Antibody #56830
Filter:
- WB
- IP
Supporting Data
REACTIVITY | H |
SENSITIVITY | Endogenous |
MW (kDa) | 70 |
SOURCE | Rabbit |
Application Key:
- WB-Western Blotting
- IP-Immunoprecipitation
Species Cross-Reactivity Key:
- H-Human
Product Information
Product Usage Information
Application | Dilution |
---|---|
Western Blotting | 1:1000 |
Immunoprecipitation | 1:50 |
Storage
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.
Protocol
Specificity / Sensitivity
MEF2D Antibody recognizes endogenous levels of total MEF2D protein.
Species Reactivity:
Human
Source / Purification
Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu168 of human MEF2D protein. Antibodies are purified by protein A and peptide affinity chromatography.
Background
Myocyte enhancer factor 2D (MEF2D) is a member of the MEF2 family of transcription factors. In mammals, there are four MEF2C-related genes (MEF2A, MEF2B, MEF2C, and MEF2D) that encode proteins that exhibit significant amino acid sequence similarity within their DNA-binding domains and, to a lesser extent, throughout the rest of the proteins (1). MEF2 proteins contain a highly conserved N-terminal MADS-box domain, an MEF2 domain, and a more highly variable C-terminal transactivation domain (2). The MEF2 family members were originally described as muscle-specific DNA-binding proteins that recognize MEF2 motifs found within the promoters of many muscle-specific genes (3,4); however, more recently they have been found to play critical roles in other physiological processes, such as heart formation and nervous system development (5,6). As such, alterations in MEF2 protein levels can result in developmental and neurological disorders, as well as other diseases such as liver fibrosis and many types of cancer (7). Specifically, MEF2D expression in hepatocellular carcinoma (HCC) is associated with higher levels of proliferation and poor prognosis (8). MEF2D is also overexpressed in clinical colorectal cancer tissues, where its high expression correlates with metastatic process. Functional investigations show that MEF2D promotes cancer cell invasion and epithelial-mesenchymal transition (EMT) and that it is essential for certain microenvironment signals to induce EMT and metastasis in vivo (9). Alternatively, MEF2D may function as a tumor suppressor in lipo- and leiomyosarcoma, as decreased MEF2D activity results in increased cell proliferation and anchorage-independent growth (10). MEF2D may also act as a tumor suppressor in rhabdomyosarcoma, as loss of MEF2D expression results in inhibition of differentiation, increased cell proliferation, and increased anchorage-independent growth (11).
- Yang, S.H. et al. (1999) Mol Cell Biol 19, 4028-38.
- Chen, X. et al. (2017) Oncotarget 8, 112152-65.
- Brand, N.J. (1997) Int J Biochem Cell Biol 29, 1467-70.
- Black, B.L. and Olson, E.N. (1998) Annu Rev Cell Dev Biol 14, 167-96.
- Shalizi, A.K. and Bonni, A. (2005) Curr Top Dev Biol 69, 239-66.
- Phan, D. et al. (2005) Development 132, 2669-78.
- Pon, J.R. and Marra, M.A. (2016) Oncotarget 7, 2297-312.
- Ma, L. et al. (2014) Cancer Res 74, 1452-62.
- Su, L. et al. (2016) Cancer Res 76, 5054-67.
- Di Giorgio, E. et al. (2013) Mol Cell Biol 33, 4473-91.
- Zhang, M. et al. (2013) Mol Cancer 12, 150.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.