Render Target: SSR
Render Timestamp: 2024-11-14T22:49:20.353Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-05-10 22:31:30.788
Product last modified at: 2024-10-29T21:15:10.215Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

INPP4b (D9K1B) XP® Rabbit mAb #14543

Filter:
  • WB
  • IP
  • IHC

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 110
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IHC-Immunohistochemistry 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunohistochemistry (Paraffin) 1:800

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    INPP4b (D9K1B) XP® Rabbit mAb recognizes endogenous levels of total INPP4b protein.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Asn773 of human INPP4b protein.

    Background

    Phosphatidylinositol lipids and phosphoinositides are important second messengers, their generation controlling many cellular events. Intracellular levels of these molecules are regulated by phosphoinositide kinases and phosphatases. One of the best characterized lipid kinases is phosphoinositide 3-kinase (PI3K), which is responsible for phosphorylation on the D-3 position of the inositide head group (1). This action of PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN, the well characterized partnering phosphatase, reverses this process by removing the phosphate from PI(3,4,5)P3 at the D-3 position to generate PI(4,5)P2 (1,2). Dephosphorylation on the D-5 position to generate PI(3,4)P2 occurs through the action of SHIP1 or SHIP2 (3), and dephosphorylation on the D-4 position to generate PI(3)P can occur through the action of inositol polyphosphate 4-phosphatase isoenzymes type I (INPP4a) and type II (INPP4b) (4,5). While INPP4a has been implicated in neuronal survival and megakaryocyte lineage determination (6,7), less is understood about INPP4b. It has been shown that two splice variants of INPP4b occur in mice, each showing distinct tissue distribution and subcellular localization (5,8).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    SignalStain is a registered trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.