Render Target: SSR
Render Timestamp: 2025-01-09T19:35:25.731Z
Commit: 199712eb9daea12d88cc0e67894a8a09f475f8cb
XML generation date: 2025-01-02 19:01:07.818
Product last modified at: 2025-01-03T08:00:57.061Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Hexokinase II (F9Q4T) Rabbit mAb #55205

Filter:
  • WB
  • IP
  • F

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 102
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Simple Western™ 1:10 - 1:50
    Immunoprecipitation 1:50
    Flow Cytometry (Fixed/Permeabilized) 1:600 - 1:2400

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Hexokinase II (F9Q4T) Rabbit mAb recognizes endogenous levels of total hexokinase II protein. This antibody does not cross-react with hexokinase I protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human hexokinase II protein.

    Background

    Hexokinase catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis. Four distinct mammalian hexokinase isoforms, designated as hexokinase I, II, III, and IV (glucokinase), have been identified. Hexokinases I, II, and III are associated with the outer mitochondrial membrane and are critical for maintaining an elevated rate of aerobic glycolysis in cancer cells (Warburg Effect) (1) in order to compensate for the increased energy demands associated with rapid cell growth and proliferation (2,3).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.