Render Target: SSR
Render Timestamp: 2024-11-14T22:44:19.465Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-09-20 21:16:10.635
Product last modified at: 2024-10-15T11:15:36.515Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

eIF3A (D51F4) XP® Rabbit mAb #3411

Filter:
  • WB
  • IP
  • IHC
  • IF

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 166
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IHC-Immunohistochemistry 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:100
    Immunohistochemistry (Paraffin) 1:200 - 1:800
    Immunofluorescence (Immunocytochemistry) 1:200 - 1:800

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    eIF3A (D51F4) XP® Rabbit mAb detects endogenous levels of total eIF3A protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to the sequence of human eIF3A.

    Background

    Translation initiation requires a set of factors to facilitate the association of the 40S ribosomal subunit with mRNA. The eIF4F complex, consisting of eIF4E, eIF4A, and eIF4G, binds to the 5' cap structure of mRNA. eIF4F and eIF4B unwind the secondary structure of mRNA at its 5' untranslated region. The 40S ribosomal subunit, along with some initiation factors, including eIF3, then binds to the 5' mRNA cap and searches along the mRNA for the initiation codon. eIF3 is a large translation initiation complex with 10 to 13 different subunits. eIF3A, eIF3B, eIF3C, eIF3E, eIF3F, and eIF3H are the core subunits critical for the function of this complex. eIF3 physically interacts with eIF4G, which may be responsible for the association of the 40S ribosomal subunit with mRNA (1). eIF3 also stabilizes the binding of Met-tRNAf.eIF2.GTP to the 40S ribosomal subunit and helps keep the integrity of the resulting complex upon addition of the 60S ribosomal subunit (2). Studies have shown that mTOR interacts with eIF3 directly (3,4). When cells are stimulated by hormones or mitogenic signals, mTOR binds to the eIF3 complex and phosphorylates S6K1 (3). This process results in the dissociation of S6K1 from eIF3 and S6K1 activation. The activated S6K1 then phosphorylates its downstream targets, including ribosomal protein S6 and eIF4B, resulting in stimulation of translation. Further findings demonstrated that activated mTOR signaling induces the association of eIF3 with eIF4G upon stimulation with insulin (3).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.