Render Target: SSR
Render Timestamp: 2024-12-26T19:11:30.709Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:59:54.853
Product last modified at: 2024-09-30T08:01:57.033Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77

EAAT1 (F8N7H) Mouse mAb #52148

Filter:
  • IF

    Supporting Data

    REACTIVITY H M
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Mouse IgG2b kappa
    Application Key:
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Application Dilution
    Immunofluorescence (Frozen) 1:100 - 1:400
    Immunofluorescence (Immunocytochemistry) 1:3200 - 1:6400

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    EAAT1 (F8N7H) Mouse mAb recognizes endogenous levels of total EAAT1 protein.

    Species Reactivity:

    Human, Mouse

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding His500 of human EAAT1 protein.

    Background

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. During neurotransmission, glutamate is released from vesicles of the pre-synaptic cell, and glutamate receptors (e.g., NMDA Receptor, AMPA Receptor) bind glutamate for activation at the opposing post-synaptic cell. Excitatory amino acid transporters (EAATs) regulate and maintain extracellular glutamate concentrations below excitotoxic levels. In addition, glutamate transporters may limit the duration of synaptic excitation by an electrogenic process in which the transmitter is cotransported with three sodium ions and one proton, followed by countertransport of a potassium ion. Five EAATs (EAAT1-5) are characterized: EAAT2 (GLT-1) is primarily expressed in astrocytes but is also expressed in neurons of the retina and during fetal development (1). Homozygous EAAT2 knockout mice have spontaneous, lethal seizures and an increased predisposition to acute cortical injury (2). PKC phosphorylates Ser113 of EAAT2 and coincides with glutamate transport (3).

    EAAT2 accounts for up to 90% of the total glutamate transport in brain while EAAT1 contributes the remaining 5-10% (4). The contribution of EAAT1 in neurotransmission is unclear since EAAT2 is much more abundant. However, EAAT1 expression is upregulated by increasing concentrations of glutamate in the media of cultured primary astrocytes, potentially giving this glutamate transporter additional importance (5). EAAT1 has neuroprotective potential following ischemia since reactive astrocytes and activated microglia express EAAT1 but not EAAT2 (6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.