Render Target: SSR
Render Timestamp: 2024-11-14T22:42:13.127Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-09-30 01:54:28.036
Product last modified at: 2024-10-15T16:00:10.022Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Complexin-1 (D5Q5H) Rabbit mAb #17700

Filter:
  • WB
  • IP
  • IF

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 14
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunofluorescence (Immunocytochemistry) 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Complexin-1 (D5Q5H) Rabbit mAb recognizes endogenous levels of total Compexin-1 protein. This antibody does not cross-react with Complexin-2.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with recombinant protein specific to human Complexin-1 protein.

    Background

    Complexins are small soluble proteins composed of a central α-helical-structured domain surrounded by amino- and carboxy-terminal unstructured domains (1). These cytosolic proteins bind to t-SNAREs with low affinity and to assembled SNARE complexes with high affinity (1,2). Two isoforms, complexin-1 and complexin-2, are expressed in neuronal cells (3) where they regulate evoked and spontaneous exocytosis (4,5). Altered complexin expression resulting from RNAi-mediated knockdown (6) or gene invalidation (7) leads to alteration in spontaneous fusion events and neurotransmitter release, which reflects functions at both inhibitory and stimulatory synapses.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.