Render Target: SSR
Render Timestamp: 2025-02-03T01:03:31.184Z
Commit: 1bba917eefc12d62e72a522121e2774ffbd0ee36
XML generation date: 2024-08-01 15:32:09.506
Product last modified at: 2024-05-30T07:09:46.133Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

CENP-T Antibody #12494

Filter:
  • WB

Inquiry Info. # 12494

Please see our recommended alternatives.

    Supporting Data

    REACTIVITY H M Mk
    SENSITIVITY Endogenous
    MW (kDa) 65
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    CENP-T Antibody recognizes endogenous levels of total CENP-T protein.

    Species Reactivity:

    Human, Mouse, Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human CENP-T protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    Modulation of chromatin structure plays a critical role in the regulation of transcription and replication of the eukaryotic genome. The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. In addition to the growing number of post-translational histone modifications regulating chromatin structure, cells can also exchange canonical histones with variant histones that can directly or indirectly modulate chromatin structure (1). CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin (2). The greatest divergence between CENP-A and canonical histone H3 occurs in the amino-terminal tail of the protein, which binds linker DNA between nucleosomes and facilitates proper folding of centromeric heterochromatin (3). The amino-terminal tail of CENP-A is also required for recruitment of other centromeric proteins (CENP-C, hSMC1, hZW10), proper kinetochore assembly, and chromosome segregation during mitosis (4).

    CENP-A is regarded as the epigenetic mark of the centromere that persists through cell generations (5). Although its presence is necessary, it is not sufficient for formation of functional kinetochores (6). CENP-T, in complex with CENP-W, has recently been shown to form a histone fold, a structure that is capable of association with DNA, and target DNA to the kinetochore (7). Kinetochore attachment is mediated by a long flexible N-terminal region that has been shown to interact with outer proteins of the kinetochore complex (reviewed in 8). Moreover, the CENP-T-W complex has also been shown to interact with the CENP-S-X dimer, to form a heterotetrameric complex that has structural and potentially functional similarity to canonical histones (8). Since CENP-S-X are conserved kinetochore localized proteins, this new complex has been suggested to be a novel centromeric histone.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.