Render Target: SSR
Render Timestamp: 2024-11-14T22:38:33.887Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-08-01 15:26:03.662
Product last modified at: 2024-11-07T13:15:11.592Z
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

BNIP3 Antibody #3769

Filter:
  • WB

    Supporting Data

    REACTIVITY M R
    SENSITIVITY Endogenous
    MW (kDa) 22-28, 50-55
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    BNIP3 Antibody detects endogenous levels of total BNIP3 protein from mouse and rat.

    Species Reactivity:

    Mouse, Rat

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ser60 of BNIP3 from mouse/rat. Antibodies were purified by peptide affinity chromatography.

    Background

    BNIP3 (Bcl-2/E1B-19kDa interacting protein 3) is a pro-apoptotic mitochondrial protein and Bcl-2 family member that contains a Bcl-2 homology 3 (BH3) domain and a carboxyl-terminal transmembrane (TM) domain (1-3). While BNIP3 has a predicted molecular weight of about 22 kDa, it runs anomalously on SDS-PAGE and includes a band of around 60 kDa that may be a dimeric form that is not reduced (2). BNIP3 associates with anti-apoptotic family members Bcl-2, Bcl-xL, and the adenovirus homologue E1B-19kDa. BNIP3 is distinct from other Bcl-2 family members that contain only the BH3 domain in that the TM domain, and not the BH3 domain, is required for mitochondrial targeting and pro-apoptotic activity (4). In addition to apoptosis, BNIP3 has been implicated in necrosis (5) and autophagy (6-11). In hypoxic conditions, BNIP3 can induce mitochondrial autophagy (mitophagy) by disrupting the Bcl-2-Beclin-1 complex (9). BNIP3 can also promote mitophagy by triggering the translocation of the E3 ubiquitin ligase Parkin to the mitochondria (10) or by directly binding LC3 on the autophagosome (11). BNIP3 may also localize to the endoplasmic reticulum (ER) where it can selectively induce the autophagic clearance of ER (ERphagy) (11). Increased expression of BNIP3 under hypoxic conditions is mainly regulated by the transcription factor HIF-1α (12-14). Silencing of the BNIP3 promoter by methylation has been observed in several types of cancer cells and may play an important role in their survival (14-18).
    1. Boyd, J.M. et al. (1994) Cell 79, 341-51.
    2. Chen, G. et al. (1997) J Exp Med 186, 1975-83.
    3. Yasuda, M. et al. (1998) J Biol Chem 273, 12415-21.
    4. Ray, R. et al. (2000) J Biol Chem 275, 1439-48.
    5. Vande Velde, C. et al. (2000) Mol Cell Biol 20, 5454-68.
    6. Daido, S. et al. (2004) Cancer Res 64, 4286-93.
    7. Tracy, K. et al. (2007) Mol Cell Biol 27, 6229-42.
    8. Quinsay, M.N. et al. (2010) Autophagy 6, 855-62.
    9. Bellot, G. et al. (2009) Mol Cell Biol 29, 2570-81.
    10. Lee, Y. et al. (2011) Am J Physiol Heart Circ Physiol 301, H1924-31.
    11. Hanna, R.A. et al. (2012) J Biol Chem 287, 19094-104.
    12. Bruick, R.K. (2000) Proc Natl Acad Sci USA 97, 9082-7.
    13. Guo, K. et al. (2001) Cell Death Differ 8, 367-76.
    14. Sowter, H.M. et al. (2001) Cancer Res 61, 6669-73.
    15. de Angelis, P.M. et al. (2004) Int J Oncol 24, 1279-88.
    16. Okami, J. et al. (2004) Cancer Res 64, 5338-46.
    17. Murai, M. et al. (2005) Clin Cancer Res 11, 1021-7.
    18. Murai, M. et al. (2005) Br J Cancer 92, 1165-72.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.