Render Target: SSR
Render Timestamp: 2024-12-26T19:03:45.218Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:58:41.395
Product last modified at: 2024-12-20T20:30:08.548Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

ATP6V1A (E5N9E) Rabbit mAb #39517

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 75
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    ATP6V1A (E5N9E) Rabbit mAb recognizes endogenous levels of total ATP6V1A protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human ATP6V1A protein.

    Background

    Eukaryotic cells contain ATP-driven proton pumps known as vacuolar H+-ATPases (V-ATPases) that acidify intracellular compartments and translocate protons across the plasma membrane (1,2). Intracellular V-ATPases play an important role in endocytosis and intracellular membrane trafficking, while plasma membrane V-ATPases are important in processes such as urinary acidification and bone resorption (1,2). Vacuolar ATPase enzymes are large, heteromultimeric protein complexes with component proteins found in either the V1 peripheral domain or the V0 integral domain (2). The cytoplasmic V1 domain contains a hexamer of A and B catalytic subunits, as well as a number of other protein subunits required for ATPase assembly and ATP hydrolysis. The integral V0 V-ATPase domain exhibits protein translocase activity and is responsible for transport of protons across the membrane (2). Research studies show that the V-ATPase subunits ATP6V0c, ATP6V0d1, ATP6V1A, ATP6V1B2, and ATP6V1D interact with the Ragulator protein complex and are essential for amino acid induced activation of mTORC1 on the surface of lysosomes (3). Additionally, ATP6V1A has been shown to interact with SARS-CoV-2 M protein and facilitate viral infection (4,5).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.