Render Target: SSR
Render Timestamp: 2024-12-26T19:03:33.004Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:59:11.366
Product last modified at: 2024-09-30T08:02:14.142Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Asymmetric Di-Methyl Histone H3 (Arg2) (E7W7S) Rabbit mAb #33725

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 17
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Asymmetric Di-Methyl Histone H3 (Arg2) (E7W7S) Rabbit mAb recognizes endogenous levels of total H3 protein only when asymmetrically di-methylated at Arg2. This antibody does not cross-react with histone H3 when mono-methylated or symmetrically di-methylated at Arg2. This antibody does not cross-react with any other known methylated arginine residues on histone H3.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human histone H3 protein in which Arg2 is asymmetrically di-methylated.

    Background

    The nucleosome is the primary chromatin building block and consists of DNA wrapped around an octamer made of paired histone proteins H2A, H2B, H3, and H4. Chromatin remodeling plays a critical role in the regulation of various nuclear activities, including transcription. Histone proteins are targets of post-translational modification, including acetylation, phosphorylation, ubiquitination, and methylation. Modified histone residues are recognized and bound by chromatin modifiers and the transcription machinery to regulate gene expression (1-4). Protein arginine methyltransferases (PRMTs) methylate histone proteins at arginine residues to generate mono-methylated, symmetrically di-methylated, or asymmetrically di-methylated proteins. Asymmetrically di-methylated arginine residues are found on histone H3 (Arg2, 8, 17, 26, and 42), histone H4 (Arg3), and histone H2A (Arg3) proteins. Asymmetric methylation is carried out by type 1 PRMTs, which include PRMT1, PRMT2, PRMT4/CARM1, and PRMT6. These modifications are often associated with actively transcribed genes. Symmetric di-methylation of arginine residues are found on histone H3 (Arg2 and 8), histones H4 (Arg3), and H2A (Arg3). Symmetrically di-methylated histone arginine residues are generated by type II transferases PRMT5 and PRMT7, and are often associated with transcription repression (5-9). Arginine residues can also be deiminated by a peptidyl arginine deiminase (PADI) to form the non-coded amino acid citrulline. Conversion of arginine to citrulline prevents methylation of this residue and is thought to regulate histone arginine methylation levels (10-13).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.