R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.
ADAR1 (E6X9R) XP® Rabbit mAb #81284
Filter:
- WB
- IP
- IHC
- IF
- F
Supporting Data
REACTIVITY | H Mk |
SENSITIVITY | Endogenous |
MW (kDa) | 110, 150 |
Source/Isotype | Rabbit IgG |
Application Key:
- WB-Western Blotting
- IP-Immunoprecipitation
- IHC-Immunohistochemistry
- IF-Immunofluorescence
- F-Flow Cytometry
Species Cross-Reactivity Key:
- H-Human
- Mk-Monkey
Product Information
Product Usage Information
Application | Dilution |
---|---|
Western Blotting | 1:1000 |
Immunoprecipitation | 1:50 |
Immunohistochemistry (Paraffin) | 1:100 - 1:400 |
Immunofluorescence (Immunocytochemistry) | 1:800 - 1:1600 |
Flow Cytometry (Fixed/Permeabilized) | 1:100 - 1:400 |
Storage
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.
For a carrier free (BSA and azide free) version of this product see product #95404.
For a carrier free (BSA and azide free) version of this product see product #95404.
Protocol
Specificity / Sensitivity
ADAR1 (E6X9R) XP® Rabbit mAb recognizes endogenous levels of total ADAR1 protein.
Species Reactivity:
Human, Monkey
Source / Purification
Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu419 of human ADAR1 protein.
Background
Post-transcriptional processing of RNAs, such as RNA editing, is an important mechanism by which diversity in RNA and protein is achieved that is not otherwise encoded by the genome (1,2). The most common form of RNA editing is the conversion of adenosine (A) into inosine (I) on double-stranded RNA by the adenosine deaminase acting on RNA (ADAR) family of proteins (1-3). Since inosine base pairs with cytidine, it is interpreted as a guanosine by the splicing and translational machinery, leading to alteration in the protein sequence, as well as generation of splicing isoforms (1,4-6). A-to-I editing can also influence RNA sequence recognition by RNA-binding proteins and non-coding RNA, such as miRNAs, affecting subsequent RNA processing, stability, and protein expression levels (2).
ADAR1 is ubiquitously expressed with two known isoforms, ADAR1L (p150) and ADAR1S (p110), resulting from transcription using alternative promoters and start codons. ADAR1S is constitutively expressed in the nucleus, while ADAR1L is interferon-inducible and present in both the nucleus and the cytoplasm. The induction of ADAR1L in response to cellular stress and viral infection suggests a role for RNA editing in the innate immune response (1,7). In addition, ADAR1 is essential in mammalian development, particularly in hematopoiesis and suppression of interferon signaling to protect hematopoietic stem cells from destruction in fetal liver and adult bone marrow (8,9).
ADAR1 is ubiquitously expressed with two known isoforms, ADAR1L (p150) and ADAR1S (p110), resulting from transcription using alternative promoters and start codons. ADAR1S is constitutively expressed in the nucleus, while ADAR1L is interferon-inducible and present in both the nucleus and the cytoplasm. The induction of ADAR1L in response to cellular stress and viral infection suggests a role for RNA editing in the innate immune response (1,7). In addition, ADAR1 is essential in mammalian development, particularly in hematopoiesis and suppression of interferon signaling to protect hematopoietic stem cells from destruction in fetal liver and adult bone marrow (8,9).
- Zinshteyn, B. and Nishikura, K. (2009) Wiley Interdiscip Rev Syst Biol Med 1, 202-9.
- Nishikura, K. (2006) Nat Rev Mol Cell Biol 7, 919-31.
- Bass, B.L. (2002) Annu Rev Biochem 71, 817-46.
- Reenan, R.A. (2001) Trends Genet 17, 53-6.
- Maas, S. et al. (2006) RNA Biol 3, 1-9.
- Rueter, S.M. et al. (1999) Nature 399, 75-80.
- Patterson, J.B. and Samuel, C.E. (1995) Mol Cell Biol 15, 5376-88.
- Iizasa, H. and Nishikura, K. (2009) Nat Immunol 10, 16-8.
- Hartner, J.C. et al. (2009) Nat Immunol 10, 109-15.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
Alexa Fluor is a registered trademark of Life Technologies Corporation.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.