1% for the planet logo

NRF2 Antibody #4399

We recommend the following alternatives

Filter:
  • WB
Western Blotting Image 1: NRF2 Antibody
Western blot analysis of extracts from Hep G2, 293 and COS cells using NRF2 Antibody.
This product is discontinued

Inquiry Info. # 4399

Please see our recommended alternatives.

Supporting Data

REACTIVITY H R Mk
SENSITIVITY Endogenous
MW (kDa) 120
SOURCE Rabbit
Application Key:
  • WB-Western Blotting 
Species Cross-Reactivity Key:
  • H-Human 
  • R-Rat 
  • Mk-Monkey 

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Protocol

Specificity / Sensitivity

NRF2 Antibody detects endogenous levels of total NRF2 protein. The antibody also cross-reacts with 68 kda and 31 kDa bands of indeterminate origin that may contain cleaved NRF2 protein or an alternative splice form of NRF2.

Species Reactivity:

Human, Rat, Monkey

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human NRF2 protein. Antibodies were purified by protein A and peptide affinity chromatography.

Background

The nuclear factor-like 2 (NRF2) transcriptional activator binds antioxidant response elements (ARE) of target gene promoter regions to regulate expression of oxidative stress response genes. Under basal conditions, the NRF2 inhibitor INrf2 (also called KEAP1) binds and retains NRF2 in the cytoplasm where it can be targeted for ubiquitin-mediated degradation (1). Small amounts of constitutive nuclear NRF2 maintain cellular homeostasis through regulation of basal expression of antioxidant response genes. Following oxidative or electrophilic stress, KEAP1 releases NRF2, thereby allowing the activator to translocate to the nucleus and bind to ARE-containing genes (2). The coordinated action of NRF2 and other transcription factors mediates the response to oxidative stress (3). Altered expression of NRF2 is associated with chronic obstructive pulmonary disease (COPD) (4). NRF2 activity in lung cancer cell lines directly correlates with cell proliferation rates, and inhibition of NRF2 expression by siRNA enhances anti-cancer drug-induced apoptosis (5).
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.