Rad23A Antibody #14636
Inquiry Info. # 14636
Please see our recommended alternatives.
Supporting Data
REACTIVITY | H M R Mk |
SENSITIVITY | Endogenous |
MW (kDa) | 52 |
SOURCE | Rabbit |
Application Key:
- WB-Western Blotting
- IP-Immunoprecipitation
Species Cross-Reactivity Key:
- H-Human
- M-Mouse
- R-Rat
- Mk-Monkey
Product Information
Product Usage Information
Application | Dilution |
---|---|
Western Blotting | 1:1000 |
Immunoprecipitation | 1:50 |
Storage
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.
Protocol
Specificity / Sensitivity
Rad23A Antibody recognizes endogenous levels of total Rad23A protein. This antibody does not cross-react with Rad23B protein.
Species Reactivity:
Human, Mouse, Rat, Monkey
Source / Purification
Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gln214 of human Rad23A protein. Antibodies are purified by protein A and peptide affinity chromatography.
Background
The yeast nucleotide excision repair (NER) radiation sensitive protein 23 (rad23) and its human homologs Rad23A (hHR23A) and Rad23B (hHR23B) are critical components of the cellular machinery that recognize DNA lesions and serve as receptors that target ubiquitinated substrates to the proteasome for degradation (1).
The UV excision repair protein Rad23A is a multi-domain scaffold protein that plays an important role in ubiquitin-dependent proteasomal degradation. Rad23A protein contains an amino-terminal ubiquitin-like (UBL) domain and two ubiquitin binding domains, UBA1 and UBA2 that flank an XPC binding domain (2). Rad23A is thought to form a closed conformation that is dictated by an intramolecular interaction between the UBL and UBA domains. Binding of the Rad23A UBL domain to the S5a/PSMD4 subunit of the proteasome lid disrupts the intramolecular UBL-UBA association within Rad23A and promotes its association with the proteasome (3). Research studies show that Rad23A can be recruited to the proteasome through an interaction between its UBL domain and the S2/PSMD2 proteasome subunit (4). The UBA domains of Rad23A bind mono- and polyubiquitin and are thought to shuttle proteins modified with Lys48-linked polyubiquitin chains to the proteasome for degradation (1,5-7). In addition to its role as an ubiquitin-binding protein, Rad23A also participates in nucleotide excision repair (NER) by binding and stabilizing the NER DNA binding protein XPC (2,8).
The UV excision repair protein Rad23A is a multi-domain scaffold protein that plays an important role in ubiquitin-dependent proteasomal degradation. Rad23A protein contains an amino-terminal ubiquitin-like (UBL) domain and two ubiquitin binding domains, UBA1 and UBA2 that flank an XPC binding domain (2). Rad23A is thought to form a closed conformation that is dictated by an intramolecular interaction between the UBL and UBA domains. Binding of the Rad23A UBL domain to the S5a/PSMD4 subunit of the proteasome lid disrupts the intramolecular UBL-UBA association within Rad23A and promotes its association with the proteasome (3). Research studies show that Rad23A can be recruited to the proteasome through an interaction between its UBL domain and the S2/PSMD2 proteasome subunit (4). The UBA domains of Rad23A bind mono- and polyubiquitin and are thought to shuttle proteins modified with Lys48-linked polyubiquitin chains to the proteasome for degradation (1,5-7). In addition to its role as an ubiquitin-binding protein, Rad23A also participates in nucleotide excision repair (NER) by binding and stabilizing the NER DNA binding protein XPC (2,8).
- Verma, R. et al. (2004) Cell 118, 99-110.
- Masutani, C. et al. (1994) EMBO J 13, 1831-43.
- Walters, K.J. et al. (2003) Proc Natl Acad Sci U S A 100, 12694-9.
- Elsasser, S. et al. (2002) Nat Cell Biol 4, 725-30.
- Raasi, S. et al. (2005) Nat Struct Mol Biol 12, 708-14.
- Nathan, J.A. et al. (2013) EMBO J 32, 552-65.
- Elsasser, S. et al. (2004) J Biol Chem 279, 26817-22.
- Ng, J.M. et al. (2003) Genes Dev 17, 1630-45.
限制使用
除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。
专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our
Trademark Information page.