Render Target: SSR
Render Timestamp: 2025-01-23T18:54:38.394Z
Commit: da7e4f2f0d1aed1f1f8e20e4e2ecab8f33cbd595
XML generation date: 2024-04-05 20:22:13.578
Product last modified at: 2025-01-01T09:06:33.384Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Blocking Peptide
PDP - Template ID: *******6db2f4c

Mre11 Blocking Peptide #1035

Pricing & Additional Information

To learn more about our Blocking Peptides, including pricing or custom products, please submit a product inquiry request.

Submit Blocking Peptide Inquiry

Important Ordering Details

Custom Ordering Details: This product is assembled upon order. Please allow two-four weeks for your product to be processed.

    Product Information

    Product Usage Information

    Use as a blocking reagent to evaluate the specificity of antibody reactivity in dot blot protocols.

    Storage

    Supplied in 20 mM potassium phosphate (pH 7.0), 50 mM NaCl, 0.1 mM EDTA, 1 mg/ml BSA and 5% glycerol. 1% DMSO. Store at –20°C.

    Product Description

    This peptide is used specifically to block Mre11 Antibody #4895 and Mre11 (31H4) Rabbit mAb #4847 reactivity.

    Quality Control

    The quality of the peptide was evaluated by reversed-phase HPLC and by mass spectrometry. The peptide blocks Mre11 Antibody #4895 and Mre11 (31H4) Rabbit mAb #4847 by dot blot.

    Background

    Mre11, originally described in genetic screens from the yeast Saccharomyces cerevisiae in which mutants were defective in meiotic recombination (1), is a central part of a multisubunit nuclease composed of Mre11, Rad50 and Nbs1 (MRN) (2,3). The MRN complex plays a critical role in sensing, processing and repairing DNA double strand breaks. Defects lead to genomic instability, telomere shortening, aberrant meiosis and hypersensitivity to DNA damage (4). Hypomorphic mutations of Mre11 are found in ataxia-telangiectasia-like disease (ATLD), with phenotypes similar to mutations in ATM that cause ataxia-telangiectasia (A-T), including a predisposition to malignancy in humans (5). Cellular consequences of ATLD include chromosomal instability and defects in the intra-S phase and G2/M checkpoints in response to DNA damage. The MRN complex may directly activate the ATM checkpoint kinase at DNA breaks (6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.