Render Target: SSR
Render Timestamp: 2024-12-26T18:59:44.840Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-12-25 01:36:49.724
Product last modified at: 2024-12-25T09:00:20.988Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: ELISA Kit
PDP - Template ID: *******bd382c2

PathScan® RP Phospho-PDGF Receptor α (Tyr849) Sandwich ELISA Kit #7296

Filter:
  • ELISA

Important Ordering Details

Custom Ordering Details:

If kit quantities from the same lot are needed in unlisted sizes, contact us for processing time and pricing.

Looking for this ELISA kit in a 384-well format? Inquire for availability, processing time, and pricing.

    Supporting Data

    REACTIVITY H
    Application Key:
    • ELISA-ELISA 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Description

    The rapid protocol (RP) PathScan® RP Phospho-PDGF Receptor alpha (Tyr849) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of PDGF receptor alpha when phosphorylated at Tyr849 in a reduced assay time of 1.5 hours. Incubation of cell lysate and detection antibody on the coated microwell plate forms a sandwich with PDGF Receptor alpha protein phosphorylated at Tyr849 in a single step. The plate is then extensively washed and TMB reagent is added for signal development. The magnitude of absorbance for the developed color is proportional to the quantity of PDGF Receptor alpha protein phosphorylated at Tyr849. Learn more about all of your ELISA kit options here.

    *Antibodies in this kit are custom formulations specific to the kit.

    Protocol

    Specificity / Sensitivity

    The PathScan® RP Phospho-PDGF Receptor a (Tyr849) Sandwich ELISA Kit #7296 detects endogenous levels of PDGF Receptor a protein phosphorylated at Tyr849. The kit sensitivity is shown in Figure 1. This kit detects proteins from the indicated species, as determined through in-house testing, but may also detect homologous proteins from other species.

    Species Reactivity:

    Human

    Background

    Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    PathScan is a registered trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.