Render Target: SSR
Render Timestamp: 2024-12-26T18:50:20.988Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-05-10 06:23:59.826
Product last modified at: 2024-12-17T19:04:07.693Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb (Biotinylated) #9185

Filter:
  • WB

    Supporting Data

    REACTIVITY H Mk
    SENSITIVITY Endogenous
    MW (kDa) 89
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • Mk-Monkey 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as unconjugated Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb #5625.
    MW (kDa) 89

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 136 mM NaCl, 2.6 mM KCI, 12 mM sodium phosphate (pH 7.4) dibasic, 2 mg/ml BSA, and 50% glycerol. Store at –20°C. Do not aliquot the antibodies.

    Protocol

    Specificity / Sensitivity

    Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb (Biotinylated) detects endogenous levels of the large fragment (89 kDa) of human PARP1 protein produced by caspase cleavage. The antibody does not recognize full length PARP1 or other PARP isoforms.

    Species Reactivity:

    Human, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Asp214 in human PARP protein.

    Background

    PARP, a 116 kDa nuclear poly (ADP-ribose) polymerase, appears to be involved in DNA repair in response to environmental stress (1). This protein can be cleaved by many ICE-like caspases in vitro (2,3) and is one of the main cleavage targets of caspase-3 in vivo (4,5). In human PARP, the cleavage occurs between Asp214 and Gly215, which separates the PARP amino-terminal DNA-binding domain (24 kDa) from the carboxy-terminal catalytic domain (89 kDa) (2,4). PARP helps cells to maintain their viability; cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis (6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.