Render Target: SSR
Render Timestamp: 2024-11-14T22:22:22.329Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-05-10 06:23:18.755
Product last modified at: 2024-07-26T14:15:08.627Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody (Alexa Fluor Conjugate)
PDP - Template ID: *******c8ce56b
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

β-Tubulin (9F3) Rabbit mAb (Alexa Fluor® 594 Conjugate) #7634

Filter:
  • IF

    Supporting Data

    REACTIVITY H M R Mk Z B
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Application Key:
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 
    • Z-Zebrafish 
    • B-Bovine 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated β-Tubulin (9F3) Rabbit mAb #2128.

    Product Usage Information

    Application Dilution
    Immunofluorescence (Immunocytochemistry) 1:50

    Storage

    Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

    Protocol

    Specificity / Sensitivity

    β-Tubulin (9F3) Rabbit mAb (Alexa Fluor® 594 Conjugate) detects endogenous levels of total β-tubulin protein and does not cross-react with recombinant α-tubulin.

    Species Reactivity:

    Human, Mouse, Rat, Monkey, Zebrafish, Bovine

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Chicken

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of human β-tubulin protein.

    Background

    The cytoskeleton consists of three types of cytosolic fibers: microtubules, microfilaments (actin filaments), and intermediate filaments. Globular tubulin subunits comprise the microtubule building block, with α/β-tubulin heterodimers forming the tubulin subunit common to all eukaryotic cells. γ-tubulin is required to nucleate polymerization of tubulin subunits to form microtubule polymers. Many cell movements are mediated by microtubule action, including the beating of cilia and flagella, cytoplasmic transport of membrane vesicles, chromosome alignment during meiosis/mitosis, and nerve-cell axon migration. These movements result from competitive microtubule polymerization and depolymerization or through the actions of microtubule motor proteins (1).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    This product is provided under an intellectual property license from Life Technologies Corporation. The transfer of this product is conditioned on the buyer using the purchased product solely in research conducted by the buyer, excluding contract research or any fee for service research, and the buyer must not (1) use this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; or (c) manufacturing or quality assurance or quality control, and/or (2) sell or transfer this product or its components for resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or [email protected].
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.