Render Target: SSR
Render Timestamp: 2024-08-29T21:50:57.739Z
Commit: 419142f0105700b709b94a8ebde4734bae2c62a3
1% for the planet logo
PDP - Template Name: Monoclonal Antibody (Alexa Fluor Conjugate)
PDP - Template ID: *******c8ce56b
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

DNA-PKcs (E6U3A) Rabbit mAb (Alexa Fluor® 488 Conjugate) #75070

Filter:
  • F

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Application Key:
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated DNA-PKcs (E6U3A) Rabbit mAb #38168.

    Product Usage Information

    Application Dilution
    Flow Cytometry (Fixed/Permeabilized) 1:50

    Storage

    Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

    Protocol

    Specificity / Sensitivity

    DNA-PKcs (E6U3A) Rabbit mAb (Alexa Fluor® 488 Conjugate) recognizes endogenous levels of total DNA-PKcs protein.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro608 of human DNA-PKcs protein.

    Background

    DNA-dependent protein kinase (DNA-PK) is an important factor in the repair of double-stranded breaks in DNA. Cells lacking DNA-PK or in which DNA-PK is inhibited fail to show proper nonhomologous end-joining (NHEJ) (1-7). DNA-PK is composed of two DNA-binding subunits (Ku70 and Ku86) and one 450 kDa catalytic subunit (DNA-PKcs) (8). It is thought that a heterodimer of Ku70 and Ku86 binds to double-stranded DNA broken ends before DNA-PKcs binds and is activated (1,9). Activated DNA-PKcs is a serine/threonine kinase that has been shown to phosphorylate a number of proteins in vitro, including p53, transcription factors, RNA polymerase, and Ku70/Ku86 (10,11). DNA-PKcs autophosphorylation at multiple sites, including Thr2609 and Ser2056, results in an inactivation of DNA-PK kinase activity and NHEJ ability (12,13). It has been demonstrated, however, that DNA-PK preferentially phosphorylates substrates before it autophosphorylates, suggesting that DNA-PK autophosphorylation may play a role in disassembly of the DNA repair machinery (14,15). Autophosphorylation at Thr2609 has also been shown to be required for DNA-PK-mediated double-strand break repair, and phosphorylated DNA-PK co-localizes with H2A.X and 53BP1 at sites of DNA damage (16). Phosphorylation at Ser2056 occurs in response to double-stranded DNA breaks and ATM activation (17).

    1. Gottlieb, T.M. and Jackson, S.P. (1993) Cell 72, 131-42.
    2. Hartley, K.O. et al. (1995) Cell 82, 849-56.
    3. Rosenzweig, K.E. et al. (1997) Clin Cancer Res 3, 1149-56.
    4. Jackson, S.P. and Jeggo, P.A. (1995) Trends Biochem Sci 20, 412-5.
    5. Roth, D.B. et al. (1995) Curr Biol 5, 496-9.
    6. Baumann, P. and West, S.C. (1998) Proc Natl Acad Sci U S A 95, 14066-70.
    7. Chen, S. et al. (2001) J Biol Chem 276, 24323-30.
    8. Jeggo, P.A. (1997) Mutat Res 384, 1-14.
    9. Suwa, A. et al. (1994) Proc Natl Acad Sci U S A 91, 6904-8.
    10. Anderson, C.W. and Lees-Miller, S.P. (1992) Crit Rev Eukaryot Gene Expr 2, 283-314.
    11. Kuhn, A. et al. (1995) Genes Dev 9, 193-203.
    12. Chan, D.W. and Lees-Miller, S.P. (1996) J Biol Chem 271, 8936-41.
    13. Douglas, P. et al. (2002) Biochem. J. 368, 243-51.
    14. Lees-Miller, S.P. et al. (1992) Mol Cell Biol 12, 5041-9.
    15. Jackson, S.P. et al. (1990) Cell 63, 155-65.
    16. Chan, D.W. et al. (2002) Genes Dev 16, 2333-8.
    17. Yajima, H. et al. (2009) J Mol Biol 385, 800-10.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    This product is provided under an intellectual property license from Life Technologies Corporation. The transfer of this product is conditioned on the buyer using the purchased product solely in research conducted by the buyer, excluding contract research or any fee for service research, and the buyer must not (1) use this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; or (c) manufacturing or quality assurance or quality control, and/or (2) sell or transfer this product or its components for resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or [email protected].
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.