查看特别推荐 >>

泛素连接酶表

泛素连接酶表提供 E3 泛素连接酶及其底物(已知时)、相应参考文献的列表。

泛素连接酶表

连接酶 底物 功能 参考文献
连接酶 底物 功能 参考文献
AMFR KAI1 AMFR 也称 gp78。AMFR 是一种必不可少的内质网膜蛋白,在内质网相关降解 (ERAD) 中发挥作用。AMFR 被发现通过泛素化转移抑制因子 KAI1 来促进肿瘤转移。 (1)
APC/Cdc20 Cyclin B 后期促进复合体/细胞周期体 (APC/C) 是一种有 E3 连接酶活性的多蛋白复合体,它通过降解周期素和其他有丝分裂蛋白来调节细胞周期进程。APC 见于含有 CDC20、CDC27、SPATC1 和 TUBG1 的复合体。 (2)
APC/Cdh1 Cdc20, Cyclin B, Cyclin A, Aurora A, Securin, Skp2, Claspin 后期促进复合体/细胞周期体 (APC/C) 是一种有 E3 连接酶活性的多蛋白复合体,它通过降解周期素和其他有丝分裂蛋白来调节细胞周期进程。APC/C-Cdh1 二聚复合体在后期和末期被激活,并保持活性直至开始下一个 S 期。 (3, 4, 5, 6, 7)
C6orf157 Cyclin B C6orf157 也称 H10BH。C6orf157 是一种经证实会泛素化周期素 B 的 E3 泛素连接酶。 (8)
Cbl   Cbl-b 和 c-Cbl 是 Cbl 接头蛋白家族的成员,在造血细胞中高表达。Cbl 蛋白有 E3 泛素连接酶活性,会在多种通路中使许多信号转导蛋白和 RTK 下调,如 EGFR、T 细胞和 B 细胞受体及整合素受体。Cbl 蛋白在 T 细胞受体信号转导通路中发挥重要作用。 (9, 10)
CBLL1 CDH1 CBLL1 也称 Hakai。CBLL1 是一种 E3 泛素连接酶,会泛素化磷酸化形式的上皮细胞钙粘素,从而导致降解和细胞间黏附丢失。 (11)
CHFR PLK1, Aurora A CHFR 是一种 E3 泛素连接酶,可作为有丝分裂应激检查点蛋白,会在应激刺激下延迟进入有丝分裂。CHFR 经证实会泛素化和降解激酶 PLK1 和 Aurora A。 (12, 13)
CHIP HSP70/90, iNOS, Runx1, LRRK2 CHIP 是一种 E3 泛素连接酶,可作为共伴侣分子蛋白,会与多种热休克蛋白(包括 HSP70 和 HSP90)以及非热休克蛋白 iNOS、Runx1 和 LRRK2 相互作用。 (14, 15, 16, 17)
DTL (Cdt2) p21 DTL 是一种会与 Cullin4 和 DDB1 构成复合体的 E3 泛素连接酶,它在紫外线损伤后促进 p21 降解。 (18)
E6-AP p53, Dlg E6-AP 也称 UBE3A。E6-AP 是一种 HECT 结构域 E3 泛素连接酶,会与丙型肝炎病毒 (HCV) 核心蛋白相互作用,并靶向这种蛋白进行降解。HCV 核心蛋白对包装病毒 DNA 和其他细胞进程非常重要。E6-AP 还会与人乳头瘤病毒 16 和 18 型的 E6 蛋白相互作用,并靶向 p53 抑癌基因蛋白进行降解。 (19)
HACE1   HACE1 是一种 E3 泛素连接酶,也是一种抑癌基因。HACE1 的异常甲基化频繁在维尔姆斯瘤和结直肠癌细胞中被发现。 (20)
HECTD1   HECTD1 是神经管闭合和间质正常发育所必需的 E3 泛素连接酶。 (21)
HECTD2   HECTD2 是一种可能的 E3 泛素连接酶,并且可能是神经退行性疾病和朊病毒病的易感基因。 (22)
HECTD3   HECTD3 是一种可能的 E3 泛素连接酶,并且可能在细胞骨架调节、肌动蛋白重构和囊泡运输中发挥作用。 (23)
HECW1 DVL1, mutant SOD1, p53 HECW1 也称 NEDL1。HECW1 与 p53 和 Wnt 信号转导蛋白 DVL1 相互作用,并且可能在 p53 介导的神经元细胞死亡中起作用。 (24, 25)
HECW2 p73 HECW2 也称 NEDL2。HECW2 泛素化 p73,p73 是 p53 家族的一员。p73 泛素化可增强蛋白质稳定性。 (26)
HERC2 RNF8 HERC2 属于参与膜转运活动的 E3 泛素连接酶家族。HERC2 与 RNF8 相互作用,从而在 DNA 损伤应答中发挥作用。 (27)
HERC3   HERC3 属于参与膜转运活动的 E3 泛素连接酶家族。HERC3 与 hPLIC-1 和 hPLIC-2 相互作用,位于晚期内体和溶酶体。 (28)
HERC4   HERC4 属于参与膜转运活动的 E3 泛素连接酶家族。HERC4 在睾丸中高表达,并且可能在精子形成中起作用。 (29)
HERC5   HERC5 属于参与膜转运活动的 E3 泛素连接酶家族。HERC5 受干扰素和其他促炎性细胞因子诱导,并在天然免疫应答期间的干扰素诱导的 ISG15 偶联中起作用。 (30, 31)
HUWE1 N-Myc, C-Myc, p53, Mcl-1, TopBP1 HUWE1 也称 Mule。HUWE1 是一种 HECT 结构域 E3 泛素连接酶,可调控 Mcl-1 降解,从而调节 DNA 损伤诱导的凋亡。HUWE1 还通过使 N-Myc 变得不稳定来调控神经元分化,并通过 ARF 调节依赖于/不依赖于 p53 的肿瘤抑制。 (32)
HYD CHK2 HYD 也称 EDD 或 UBR5。HYD 是一种 DNA 损伤应答调节分子,在许多类型的癌细胞中过表达。 (33)
ITCH MKK4, RIP2, Foxp3 ITCH 泛素化 MKK4、RIP2 和 Foxp3 等多种蛋白,从而在 T 细胞受体激活和信号转导中发挥作用。ITCH 功能缺失会导致异常免疫应答和 T 辅助细胞分化。 (34, 35, 36)
LNX1 NUMB LNX1 是一种 E3 泛素连接酶,在胚胎形成期间,它通过调节 Notch 信号转导的负调节分子 NUMB 来决定细胞命运。 (37)
mahogunin   Mahogunin 是一种与黑皮素信号转导有关的 E3 泛素连接酶。mahogunin 功能缺失会导致神经退行性疾病和色素沉着缺失,并且可能是朊病毒病的作用机制。 (38, 39)
MARCH-I HLA-DRβ MARCH1 是一种在抗原呈递细胞 (APC) 中被发现的 E3 泛素连接酶。MARCH1 泛素化 MHC II 类蛋白,并使其细胞表面表达下调。 (40)
MARCH-II   MARCH-II 是 E3 泛素连接酶 MARCH 家族的一员。它在内体结合 syntaxin6,并辅助调节囊泡运输。 (41)
MARCH-III   MARCH-III 是 E3 泛素连接酶 MARCH 家族的一员。MARCH-III 在内体结合 syntaxin6,并辅助调节囊泡运输。 (42)
MARCH-IV MHC I 类 MARCH-IV 是 E3 泛素连接酶 MARCH 家族的一员。MARCH-IV 泛素化 MHC I 类蛋白,并使其细胞表面表达下调。 (43)
MARCH-VI   MARCH-VI 也称 TEB4,它是 E3 泛素连接酶 MARCH 家族的一员。它位于内质网,并参与内质网相关蛋白降解。 (44)
MARCH-VII gp190 MARCH-VII 也称 axotrophin。MARCH-VII 最初被发现是一种神经干细胞基因,但经证实一直通过降解 LIF 受体亚基 gp190 在 T 淋巴细胞的 LIF 信号转导中发挥作用。 (45)
MARCH-VIII B7-2、MHC II 类 MARCH-VIII 也称 c-MIR。MARCH-VIII 会导致 B7-2 泛素化/降解,B7-2 是抗原呈递的共刺激分子。MARCH-VIII 经证实还泛素化 MHC II 类蛋白。 (46)
MARCH-X   MARCH-X 也称 RNF190。MARCH-X 是 E3 泛素连接酶 MARCH 家族的一员。MARCH-X 的假定作用目前未知。  
MDM2 p53 MDM2(p53 的一种 E3 泛素连接酶)在调节 p53 的稳定性中起核心作用。Akt 介导的 MDM2 Ser166 和 Ser186 磷酸化会增加其与 p300 的相互作用,导致 MDM2 介导的 p53 泛素化和降解。 (47)
MEKK1 c-Jun, Erk MEKK1 是 STE11 家族的一个有名蛋白激酶。MEKK1 磷酸化并激活 MKK4/7,MKK4/7 反过来会激活 JNK1/2/3。MEKK1 含有 RING 指形结构域,并显示出对 c-Jun 和 Erk 有 E3 泛素连接酶活性。 (48, 49)
MIB1 Delta、Jagged Mindbomb 同源物 1 (MIB1) 是促进 Notch 配体、Delta 和 Jagged 泛素化和后续内吞的 E3 连接酶。 (50)
MIB2 Delta、Jagged Mind Bomb 2 (MIB2) 是一种正调控 Notch 信号转导的 E3 连接酶。MIB2 经证实在肌管分化和肌肉稳定性中起作用。MIB2 泛素化 NMDAR 亚基,从而辅助调控神经元突触可塑性。 (51, 52, 53)
MycBP2 Fbxo45, TSC2 MycBP2 是一种 E3 泛素连接酶,也称 PAM。MycBP2 结合 Fbxo45,从而在神经元发育中发挥作用。MycBP2 还通过泛素化 TSC2 来调控 mTOR 通路。 (54, 55)
NEDD4   NEDD4 是一种 E3 泛素连接酶,在早期小鼠胚胎中枢神经系统中高表达。在胞内 Na+ 浓度升高时,NEDD4 会使神经元电压门控 Na+ 通道 (NaV) 和上皮 Na+ 通道 (ENaC) 下调。 (56, 57)
NEDD4L Smad2 NEDD4L 是一种 E3 泛素连接酶,在早期小鼠胚胎中枢神经系统中高表达。NEDD4L 经证实通过靶向 Smad2 进行降解来负调控 TGF-β 信号转导。 (58)
Parkin   Parkin 是一种 E3 泛素连接酶,经证实是自噬通路的一个关键调节分子。Parkin 突变会导致帕金森病。 (59)
PELI1 TRIP, IRAK PELI1 是一种 E3 泛素连接酶,它通过 TRIP 接头蛋白在 Toll 样受体(TLR3 和 TLR4)至 NF-κB 的信号转导中起作用。PELI1 经证实还可泛素化 IRAK。 (60, 61)
Pirh2 TP53 Pirh2 也称 RCHY1。Pirh2 是一种 RING 结构域 E3 泛素连接酶。Pirh2 结合 p53,并促进不依赖于 MDM2 的 p53 蛋白酶体降解。Pirh2 基因表达受 p53 调控,使得这种相互作用成为自抑制性反馈环的一部分。 (62, 63)
PJA1 ELF PJA1 也称 PRAJA。PJA1 泛素化 SMAD4 接头蛋白 ELF,从而使胃癌细胞中的 TGF-β 信号转导下调。 (64)
PJA2   PJA2 是一种在神经元突触中被发现的 E3 泛素连接酶。PJA2 的具体作用和底物不清楚。 (65)
RFFL p53 RFFL 也称 CARP2,它是一种会抑制内体再循环的 E3 泛素连接酶。RFFL 还会通过使 MDM2 变得稳定来降解 p53。 (66, 67)
RFWD2 MTA1, p53, FoxO1 RFWD2 也称 COP1。RFWD2 是一种 E3 泛素连接酶,它会泛素化与 DNA 损伤应答和凋亡有关的多种蛋白,包括 MTA1、p53 和 FoxO1。 (68, 69, 70)
Rictor SGK1 Rictor 与 Cullin1-Rbx1 相互作用,形成 E3 泛素连接酶复合体,并促进 SGK1 泛素化和降解。  
RNF5 JAMP, paxillin RNF5 也称 RMA5。RNF5 泛素化 JAMP,从而在与内质网相关的错误折叠蛋白的降解以及内质网应激反应中起作用。RNF5 还在细胞迁移中起作用,并且经证实会泛素化桩蛋白。 (71, 72)
RNF8 H2A,H2AX RNF8 是一个 RING 结构域 E3 泛素连接酶,在受损染色体的修复中起作用。RNF8 在双链断裂 (DSB) 处泛素化组蛋白 H2A 和 H2A.X,从而募集 53BP1 和 BRCA1 修复蛋白。 (73)
RNF19 SOD1 RNF19 也称 Dorfin。突变体 SOD1 的聚集和聚合会导致 ALS 疾病。RNF19 泛素化突变体 SOD1 蛋白,导致神经毒性减弱。 (74)
RNF190   见 MARCH-X  
RNF20 Histone H2B RNF20 也称 BRE1。RNF20 是一种会单泛素化组蛋白 H2B 的 E3 泛素连接酶。H2B 泛素化与激活转录的区域有关。 (75)
RNF34 Caspase-8, -10 RNF34 也称 RFI。RNF34 会泛素化/降解 caspase-8 和 -10,从而抑制死亡受体介导的凋亡。 (76)
RNF40 Histone H2B RNF40 也称 BRE1-B。RNF40 与 RNF20 形成蛋白复合体,导致组蛋白 H2B 泛素化。H2B 泛素化与激活转录的区域有关。 (77)
RNF125   RNF125 也称 TRAC-1。RNF125 经证实会正调控 T 细胞激活。 (78)
RNF128   RNF128 也称 GRAIL。RNF128 促进 T 细胞无能,并且可能在 T 细胞/APC 相互作用中的肌动蛋白细胞骨架组织方面发挥作用。 (79)
RNF138 TCF/LEF RNF138 也称 NARF。RNF138 结合 Nemo 样激酶 (NLK),并通过泛素化/降解 TCF/LEF 来抑制 Wnt/ß-catenin 信号转导。 (80)
RNF168 H2A, H2A.X RNF168 是一种 E3 泛素连接酶,它会与 RNF8 一起在 DNA 双链断裂 (DSB) 处泛素化组蛋白 H2A 和 H2A.X,从而辅助保护基因组完整性。 (81)
SCF/β-TrCP IκBα, Wee1, Cdc25A, β-Catenin SCF/β-TrCP 是一种 E3 泛素连接酶复合体,包含 SCF(SKP1-CUL1-F-盒蛋白)和底物识别组分 β-TrCP(也称 BTRC)。SCF/β-TrCP 介导与细胞周期进程、信号转导和转录有关的蛋白的泛素化。SCF/β-TrCP 还能调节 β-catenin 的稳定性,并参与 Wnt 信号转导。 (82, 83, 84, 85)
SCF/FBW7 Cyclin E, c-Myc, c-Jun SCF/FBW7 是一种 E3 泛素连接酶复合体,包含 SCF(SKP1-CUL1-F-盒蛋白)和底物识别组分 FBW7。SCF/FBW7 介导与细胞周期进程、信号转导和转录有关的蛋白的泛素化。SCF/FBW7 的靶蛋白包括磷酸化形式的 c-Myc、周期素 E、Notch 胞内域 (NICD) 和 c-Jun。FBXW7 缺陷可能是乳腺癌的一个病因。 (86, 87, 88)
SCF/Skp2 p27, p21, Fox01 SCF/Skp2 是一种 E3 泛素连接酶复合体,包含 SCF(SKP1-CUL1-F-盒蛋白)和底物识别组分 Skp2。SCF/Skp2 介导与细胞周期进程(特别是 G1/S 过渡)、信号转导和转录有关的蛋白的泛素化。SCF/Skp2 的靶蛋白包括磷酸化形式的 p27Kip1、p21Waf1/Cip1 和 FoxO1。 (89, 90)
SHPRH PCNA SHPRH 是一种 E3 泛素连接酶,它通过泛素化 PCNA 在 DNA 复制中发挥作用。DNA 损伤后,PCNA 泛素化会防止停滞复制叉所引起的基因组不稳定性。 (91)
SIAH1 β-catenin, Bim, TRB3 SIAH1 是一种 E3 泛素连接酶,它通过泛素化 β-catenin 在 Wnt 信号转导抑制中发挥作用。SIAH1 经证实还会通过使 Bim 上调来促进凋亡,并泛素化信号转导接头蛋白 TRB3。 (92, 93, 94)
SIAH2 HIPK2, PHD1/3 SIAH2 是一种 E3 泛素连接酶,它通过泛素化和降解 HIPK2 在缺氧中起作用。SIAH2 还会泛素化 PHD1/3,从而在缺氧情况下调节 HIF-1α 的水平。 (95, 96)
SMURF1 Smads SMURF1 是一种 E3 泛素连接酶,它与 BMP 通路 Smad 效应子相互作用,从而导致 Smad 蛋白质泛素化和降解。Smurf1 在体内负调控成骨细胞分化和骨形成。 (97, 98)
SMURF2 Smads, Mad2 SMURF2 是一种会与 BMP 和 TGF-β 通路中的 Smad 相互作用的 E3 泛素连接酶。SMURF2 还通过泛素化 Mad2 来调节有丝分裂纺锤体检查点。 (99, 100)
TOPORS p53, NKX3.1 TOPORS 是一种 E3 泛素连接酶,也是一种 SUMO 连接酶。TOPORS 泛素化并 sumo 化 p53,从而调节 p53 稳定性。TOPORS 经证实还会泛素化抑癌基因 NKX3.1。 (101, 102)
TRAF6 NEMO, Akt1 TRAF6 是一种在 IL-1R、CD40 和 TLR 信号转导中充当接头蛋白的 E3 泛素连接酶。TRAF6 通过 IKK 的 K63 聚泛素化促进 NF-kB 信号转导,从而导致 IKK 激活。TRAF6 经证实还会泛素化 Akt1,导致它转位到细胞膜。 (103, 104)
TRAF7   TRAF7 是一种 E3 泛素连接酶,也是一种 SUMO 连接酶,可在 TNF 受体和 TLR 信号转导中充当接头蛋白。TRAF7 经证实能自泛素化,并通过 MEKK3 介导的 NF-κB 激活在凋亡中发挥作用。 (105)
TRIM63 Troponin I, MyBP-C, MyLC1/2 TRIM63 也称 Murf-1。TRIM63 是一种肌肉特异性 E3 泛素连接酶,其表达在肌萎缩期间上调。TRIM63 经证实会泛素化多种重要的肌蛋白,包括肌钙蛋白 I、MyBP-C 和 MyLC1/2。 (106)
UBE3B   UBE3B 是一种通过序列分析检测到的 E3 泛素连接酶。UBE3B 的特定底物和细胞功能目前尚不清楚。 (107)
UBE3C   UBE3C 是一种 E3 泛素连接酶,也称 KIAA10。UBE3C 在肌细胞中高表达,并且可能会与转录调节分子 TIP120B 相互作用。 (108)
UBR1   UBR1 是一种 E3 泛素连接酶,负责错误折叠的细胞浆蛋白的蛋白酶体降解。UBR1 经证实是 N 端法则蛋白水解通路的泛素连接酶,可调节短寿命蛋白的降解。 (109, 110)
UBR2 Histone H2A UBR2 是一种 E3 泛素连接酶,经证实会泛素化组蛋白 H2A,从而导致转录沉默。UBR2 还是 N 端法则蛋白水解通路的一部分。 (111, 112)
UHRF2 PCNP UHRF2 也称 NIRF。UHRF2 是一种可能通过结合 Chk2 来调控细胞周期进程的胞核蛋白。UHRF2 还会泛素化 PCNP,并且经证实可降解含有多聚谷氨酰胺重复序列的胞核聚合物。 (113, 114, 115)
VHL HIF-1α VHL 是 ECV(延伸蛋白 B/C、Cullen-2、VHL)E3 泛素连接酶复合体的底物识别组分,负责降解转录因子 HIF-1α。HIF-1α 的泛素化和降解仅发生在常氧期间,而不是缺氧期间,因此在调节氧诱导的基因表达中发挥核心作用。 (116)
WWP1 ErbB4 WWP1 是一种通常在乳腺癌细胞中过表达的 E3 泛素连接酶。WWP1 经证实会泛素化和降解 ErbB4。有趣的是,在限制饮食的情况下,发现秀丽隐杆线虫中的 WWP1 同源物出现寿命延长。 (117, 118)
WWP2 Oct-4 WWP2 是一种 E3 泛素连接酶,经证实会泛素化/降解干细胞多能性因子 Oct-4。WWP2 还会泛素化转录因子 EGR2,从而抑制激活诱导的 T 细胞死亡。 (119, 120)
ZNRF1   ZNRF1 是一种在神经元细胞中高表达的 E3 泛素连接酶。ZNRF1 在突触囊泡膜中被发现,并且可能会调节神经元传递和可塑性。 (121)

非常感谢哈佛大学医学院贝斯以色列女执事医疗中心的 Wenyi Wei 教授贡献这个表格。

参考文献

  1. Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat. Med. 13(12), 1504–9.
  2. Ban KH, Torres JZ, Miller JJ, Mikhailov A, Nachury MV, Tung JJ, Rieder CL, Jackson PK (2007) The END network couples spindle pole assembly to inhibition of the anaphase-promoting complex/cyclosome in early mitosis. Dev. Cell 13(1), 29–42.
  3. Lukas C, Sørensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM, Bartek J, Lukas J (1999) Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401(6755), 815–8.
  4. Hagting A, Den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J (2002) Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157(7), 1125–37.
  5. Pfleger CM, Lee E, Kirschner MW (2001) Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev. 15(18), 2396–407.
  6. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428(6979), 194–8.
  7. Gao D, Inuzuka H, Korenjak M, Tseng A, Wu T, Wan L, Kirschner M, Dyson N, Wei W (2009) Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol. Biol. Cell 20(14), 3305–16.
  8. Kobirumaki F, Miyauchi Y, Fukami K, Tanaka H (2005) A novel UbcH10-binding protein facilitates the ubiquitinylation of cyclin B in vitro. J. Biochem. 137(2), 133–9.
  9. Huang F, Gu H (2008) Negative regulation of lymphocyte development and function by the Cbl family of proteins. Immunol. Rev. 224, 229–38.
  10. Thien CB, Langdon WY (1998) c-Cbl: a regulator of T cell receptor-mediated signalling. Immunol. Cell Biol. 76(5), 473–82.
  11. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4(3), 222–31.
  12. Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD (2003) The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 22(46), 7101–7.
  13. Kwon YE, Kim YS, Oh YM, Seol JH (2009) Nuclear localization of Chfr is crucial for its checkpoint function. Mol. Cells 27(3), 359–63.
  14. Kundrat L, Regan L (2010) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. J. Mol. Biol. 395(3), 587–94.
  15. Chen L, Kong X, Fu J, Xu Y, Fang S, Hua P, Luo L, Yin Z (2009) CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell. Immunol. 258(1), 38–43.
  16. Shang Y, Zhao X, Xu X, Xin H, Li X, Zhai Y, He D, Jia B, Chen W, Chang Z (2009) CHIP functions an E3 ubiquitin ligase of Runx1. Biochem. Biophys. Res. Commun. 386(1), 242–6.
  17. Ding X, Goldberg MS (2009) Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS ONE 4(6), e5949.
  18. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 22(18), 2496–506.
  19. Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T, Fukuda K, Abe K, Sato S, Fukasawa M, Yamakawa Y, Nishijima M, Moriishi K, Matsuura Y, Wakita T, Suzuki T, Howley PM, Miyamura T, Shoji I (2007) E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J. Virol. 81(3), 1174–85.
  20. Zhang L, Anglesio MS, O'Sullivan M, Zhang F, Yang G, Sarao R, Mai PN, Cronin S, Hara H, Melnyk N, Li L, Wada T, Liu PP, Farrar J, Arceci RJ, Sorensen PH, Penninger JM (2007) The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat. Med. 13(9), 1060–9.
  21. Zohn IE, Anderson KV, Niswander L (2007) The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure. Dev. Biol. 306(1), 208–21.
  22. Lloyd SE, Maytham EG, Pota H, Grizenkova J, Molou E, Uphill J, Hummerich H, Whitfield J, Alpers MP, Mead S, Collinge J (2009) HECTD2 is associated with susceptibility to mouse and human prion disease. PLoS Genet. 5(2), e1000383.
  23. Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, Jin C, Huang H (2008) The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem. Biophys. Res. Commun. 367(4), 805–12.
  24. Miyazaki K, Fujita T, Ozaki T, Kato C, Kurose Y, Sakamoto M, Kato S, Goto T, Itoyama Y, Aoki M, Nakagawara A (2004) NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J. Biol. Chem. 279(12), 11327–35.
  25. Li Y, Ozaki T, Kikuchi H, Yamamoto H, Ohira M, Nakagawara A (2008) A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner. Oncogene 27(26), 3700–9.
  26. Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S, Watanabe K, Nakagawa T, Nakagawara A (2003) A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem. Biophys. Res. Commun. 308(1), 106–13.
  27. Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat. Cell Biol. 12(1), 80–6; sup pp 1.
  28. Hochrainer K, Kroismayr R, Baranyi U, Binder BR, Lipp J (2008) Highly homologous HERC proteins localize to endosomes and exhibit specific interactions with hPLIC and Nm23B. Cell. Mol. Life Sci. 65(13), 2105–17.
  29. Rodriguez CI, Stewart CL (2007) Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev. Biol. 312(2), 501–8.
  30. Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 281(7), 4334–8.
  31. Wong JJ, Pung YF, Sze NS, Chin KC (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl. Acad. Sci. U.S.A. 103(28), 10735–40.
  32. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121(7), 1085–95.
  33. Munoz MA, Saunders DN, Henderson MJ, Clancy JL, Russell AJ, Lehrbach G, Musgrove EA, Watts CK, Sutherland RL (2007) The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints. Cell Cycle 6(24), 3070–7.
  34. Ahn YH, Kurie JM (2009) MKK4/SEK1 is negatively regulated through a feedback loop involving the E3 ubiquitin ligase itch. J. Biol. Chem. 284(43), 29399–404.
  35. Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW (2009) ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr. Biol. 19(15), 1255–63.
  36. Su J, Liu YC (2010) Foxp3 positive regulatory T cells: a functional regulation by the E3 ubiquitin ligase Itch. Semin Immunopathol 32(2), 149–56.
  37. Nie J, McGill MA, Dermer M, Dho SE, Wolting CD, McGlade CJ (2002) LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J. 21(1-2), 93–102.
  38. Pérez-Oliva AB, Olivares C, Jiménez-Cervantes C, García-Borrón JC (2009) Mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase inhibits signaling from melanocortin receptor by competition with Galphas. J. Biol. Chem. 284(46), 31714–25.
  39. Chakrabarti O, Hegde RS (2009) Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137(6), 1136–47.
  40. Jabbour M, Campbell EM, Fares H, Lybarger L (2009) Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression. J. Immunol. 183(10), 6500–12.
  41. Nakamura N, Fukuda H, Kato A, Hirose S (2005) MARCH-II is a syntaxin-6-binding protein involved in endosomal trafficking. Mol. Biol. Cell 16(4), 1696–710.
  42. Fukuda H, Nakamura N, Hirose S (2006) MARCH-III Is a novel component of endosomes with properties similar to those of MARCH-II. J. Biochem. 139(1), 137–45.
  43. Bartee E, Mansouri M, Hovey Nerenberg BT, Gouveia K, Früh K (2004) Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J. Virol. 78(3), 1109–20.
  44. Kreft SG, Wang L, Hochstrasser M (2006) Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J. Biol. Chem. 281(8), 4646–53.
  45. Szigyarto CA, Sibbons P, Williams G, Uhlen M, Metcalfe SM (2010) The E3 ligase axotrophin/MARCH-7: protein expression profiling of human tissues reveals links to adult stem cells. J. Histochem. Cytochem. 58(4), 301–8.
  46. Ohmura-Hoshino M, Matsuki Y, Aoki M, Goto E, Mito M, Uematsu M, Kakiuchi T, Hotta H, Ishido S (2006) Inhibition of MHC class II expression and immune responses by c-MIR. J. Immunol. 177(1), 341–54.
  47. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630), 296–9.
  48. Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T (2002) The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9(5), 945–56.
  49. Xia Y, Wang J, Xu S, Johnson GL, Hunter T, Lu Z (2007) MEKK1 mediates the ubiquitination and degradation of c-Jun in response to osmotic stress. Mol. Cell. Biol. 27(2), 510–7.
  50. Koo BK, Lim HS, Song R, Yoon MJ, Yoon KJ, Moon JS, Kim YW, Kwon MC, Yoo KW, Kong MP, Lee J, Chitnis AB, Kim CH, Kong YY (2005) Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132(15), 3459–70.
  51. Koo BK, Yoon KJ, Yoo KW, Lim HS, Song R, So JH, Kim CH, Kong YY (2005) Mind bomb-2 is an E3 ligase for Notch ligand. J. Biol. Chem. 280(23), 22335–42.
  52. Carrasco-Rando M, Ruiz-Gómez M (2008) Mind bomb 2, a founder myoblast-specific protein, regulates myoblast fusion and muscle stability. Development 135(5), 849–57.
  53. Jurd R, Thornton C, Wang J, Luong K, Phamluong K, Kharazia V, Gibb SL, Ron D (2008) Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner. J. Biol. Chem. 283(1), 301–10.
  54. Saiga T, Fukuda T, Matsumoto M, Tada H, Okano HJ, Okano H, Nakayama KI (2009) Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Mol. Cell. Biol. 29(13), 3529–43.
  55. Han S, Witt RM, Santos TM, Polizzano C, Sabatini BL, Ramesh V (2008) Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell. Signal. 20(6), 1084–91.
  56. Dinudom A, Harvey KF, Komwatana P, Young JA, Kumar S, Cook DI (1998) Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc. Natl. Acad. Sci. U.S.A. 95(12), 7169–73.
  57. Goulet CC, Volk KA, Adams CM, Prince LS, Stokes JB, Snyder PM (1998) Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif deleted in Liddle's syndrome. J. Biol. Chem. 273(45), 30012–7.
  58. Gao S, Alarcón C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massagué J (2009) Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol. Cell 36(3), 457–68.
  59. Chin LS, Olzmann JA, Li L (2010) Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38(Pt 1), 144–9.
  60. Chang M, Jin W, Sun SC (2009) Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat. Immunol. 10(10), 1089–95.
  61. Butler MP, Hanly JA, Moynagh PN (2007) Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the Pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases. J. Biol. Chem. 282(41), 29729–37.
  62. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112(6), 779–91.
  63. Corcoran CA, Montalbano J, Sun H, He Q, Huang Y, Sheikh MS (2009) Identification and characterization of two novel isoforms of Pirh2 ubiquitin ligase that negatively regulate p53 independent of RING finger domains. J. Biol. Chem. 284(33), 21955–70.
  64. Mishra L, Katuri V, Evans S (2005) The role of PRAJA and ELF in TGF-beta signaling and gastric cancer. Cancer Biol. Ther. 4(7), 694–9.
  65. Yu P, Chen Y, Tagle DA, Cai T (2002) PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 79(6), 869–74.
  66. Coumailleau F, Das V, Alcover A, Raposo G, Vandormael-Pournin S, Le Bras S, Baldacci P, Dautry-Varsat A, Babinet C, Cohen-Tannoudji M (2004) Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment. Mol. Biol. Cell 15(10), 4444–56.
  67. Yang W, Dicker DT, Chen J, El-Deiry WS (2008) CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2. Cell Cycle 7(5), 670–82.
  68. Li DQ, Ohshiro K, Reddy SD, Pakala SB, Lee MH, Zhang Y, Rayala SK, Kumar R (2009) E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proc. Natl. Acad. Sci. U.S.A. 106(41), 17493–8.
  69. Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, O'rourke K, Seshagiri S, Dixit VM (2006) ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313(5790), 1122–6.
  70. Kato S, Ding J, Pisck E, Jhala US, Du K (2008) COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J. Biol. Chem. 283(51), 35464–73.
  71. Tcherpakov M, Delaunay A, Toth J, Kadoya T, Petroski MD, Ronai ZA (2009) Regulation of endoplasmic reticulum-associated degradation by RNF5-dependent ubiquitination of JNK-associated membrane protein (JAMP). J. Biol. Chem. 284(18), 12099–109.
  72. Didier C, Broday L, Bhoumik A, Israeli S, Takahashi S, Nakayama K, Thomas SM, Turner CE, Henderson S, Sabe H, Ronai Z (2003) RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol. Cell. Biol. 23(15), 5331–45.
  73. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131(5), 887–900.
  74. Sone J, Niwa J, Kawai K, Ishigaki S, Yamada S, Adachi H, Katsuno M, Tanaka F, Doyu M, Sobue G (2010) Dorfin ameliorates phenotypes in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. Res. 88(1), 123–35.
  75. Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, Hublarova P, Moyal L, Gana-Weisz M, Shiloh Y, Yarden Y, Johnsen SA, Vojtesek B, Berger SL, Oren M (2008) The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22(19), 2664–76.
  76. Sasaki S, Watanabe T, Kobunai T, Konishi T, Nagase H, Sugimoto Y, Oka T, Nagawa H (2006) hRFI overexpressed in HCT116 cells modulates Bcl-2 family proteins when treated with 5-fluorouracil. Oncol. Rep. 15(5), 1293–8.
  77. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D (2005) Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell 20(4), 601–11.
  78. Giannini AL, Gao Y, Bijlmakers MJ (2008) T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. Biochem. J. 410(1), 101–11.
  79. Schartner JM, Simonson WT, Wernimont SA, Nettenstrom LM, Huttenlocher A, Seroogy CM (2009) Gene related to anergy in lymphocytes (GRAIL) expression in CD4+ T cells impairs actin cytoskeletal organization during T cell/antigen-presenting cell interactions. J. Biol. Chem. 284(50), 34674–81.
  80. Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, Kawachi K, Natsume T, Shibuya H (2006) NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J. Biol. Chem. 281(30), 20749–60.
  81. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136(3), 435–46.
  82. Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol. Cell 3(4), 527–33.
  83. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl. Acad. Sci. U.S.A. 101(13), 4419–24.
  84. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, Hershko A, Pagano M, Draetta GF (2003) Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426(6962), 87–91.
  85. Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. U.S.A. 96(11), 6273–8.
  86. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294(5540), 173–7.
  87. Welcker M, Orian A, Jin J, Grim JE, Grim JA, Harper JW, Eisenman RN, Clurman BE (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. U.S.A. 101(24), 9085–90.
  88. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG (2005) The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8(1), 25–33.
  89. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl. Acad. Sci. U.S.A. 102(5), 1649–54.
  90. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1(4), 193–9.
  91. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl. Acad. Sci. U.S.A. 105(34), 12411–6.
  92. Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M, Krajewski S, Ronai Z, Reed JC, Matsuzawa S (2006) Critical function for SIP, a ubiquitin E3 ligase component of the beta-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24(1), 29–39.
  93. Wen YY, Yang ZQ, Song M, Li BL, Zhu JJ, Wang EH (2010) SIAH1 induced apoptosis by activation of the JNK pathway and inhibited invasion by inactivation of the ERK pathway in breast cancer cells. Cancer Sci. 101(1), 73–9.
  94. Zhou Y, Li L, Liu Q, Xing G, Kuai X, Sun J, Yin X, Wang J, Zhang L, He F (2008) E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3. Cell. Signal. 20(5), 942–8.
  95. Calzado MA, de la Vega L, Möller A, Bowtell DD, Schmitz ML (2009) An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat. Cell Biol. 11(1), 85–91.
  96. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, Ronai Z (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117(7), 941–52.
  97. Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400(6745), 687–93.
  98. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, Zhang YE (2005) Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121(1), 101–13.
  99. Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 98(3), 974–9.
  100. Osmundson EC, Ray D, Moore FE, Gao Q, Thomsen GH, Kiyokawa H (2008) The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J. Cell Biol. 183(2), 267–77.
  101. Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, Liu X (2009) Plk1-mediated phosphorylation of Topors regulates p53 stability. J. Biol. Chem. 284(28), 18588–92.
  102. Guan B, Pungaliya P, Li X, Uquillas C, Mutton LN, Rubin EH, Bieberich CJ (2008) Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1. J. Biol. Chem. 283(8), 4834–40.
  103. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, Lin HK (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325(5944), 1134–8.
  104. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2), 351–61.
  105. Xu LG, Li LY, Shu HB (2004) TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J. Biol. Chem. 279(17), 17278–82.
  106. Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J. Cell Biol. 185(6), 1083–95.
  107. Gong TW, Huang L, Warner SJ, Lomax MI (2003) Characterization of the human UBE3B gene: structure, expression, evolution, and alternative splicing. Genomics 82(2), 143–52.
  108. You J, Wang M, Aoki T, Tamura TA, Pickart CM (2003) Proteolytic targeting of transcriptional regulator TIP120B by a HECT domain E3 ligase. J. Biol. Chem. 278(26), 23369–75.
  109. Eisele F, Wolf DH (2008) Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582(30), 4143–6.
  110. Tasaki T, Kwon YT (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32(11), 520–8.
  111. An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, Mook-Jung I, Zhang Y, Kwon YT (2010) UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc. Natl. Acad. Sci. U.S.A. 107(5), 1912–7.
  112. Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT (2009) The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284(3), 1884–95.
  113. Li Y, Mori T, Hata H, Homma Y, Kochi H (2004) NIRF induces G1 arrest and associates with Cdk2. Biochem. Biophys. Res. Commun. 319(2), 464–8.
  114. Mori T, Li Y, Hata H, Kochi H (2004) NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett. 557(1-3), 209–14.
  115. Iwata A, Nagashima Y, Matsumoto L, Suzuki T, Yamanaka T, Date H, Deoka K, Nukina N, Tsuji S (2009) Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system. J. Biol. Chem. 284(15), 9796–803.
  116. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516), 464–8.
  117. Li Y, Zhou Z, Alimandi M, Chen C (2009) WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene 28(33), 2948–58.
  118. Carrano AC, Liu Z, Dillin A, Hunter T (2009) A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460(7253), 396–9.
  119. Xu H, Wang W, Li C, Yu H, Yang A, Wang B, Jin Y (2009) WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res. 19(5), 561–73.
  120. Chen A, Gao B, Zhang J, McEwen T, Ye SQ, Zhang D, Fang D (2009) The HECT-type E3 ubiquitin ligase AIP2 inhibits activation-induced T-cell death by catalyzing EGR2 ubiquitination. Mol. Cell. Biol. 29(19), 5348–56.
  121. Araki T, Milbrandt J (2003) ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J. Neurosci. 23(28), 9385–94.

创建于 2010 年 11 月