Render Target: SSR
Render Timestamp: 2024-08-29T22:28:13.452Z
Commit: 419142f0105700b709b94a8ebde4734bae2c62a3
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

PRDM14 (E1D5S) XP® Rabbit mAb #83527

Filter:
  • WB
  • IP
  • IF
  • F
  • ChIP

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 70
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    • F-Flow Cytometry 
    • ChIP-Chromatin Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    For optimal ChIP and ChIP-seq results, use 10 μl of antibody and 10 μg of chromatin (approximately 4 x 106 cells) per IP. This antibody has been validated using SimpleChIP® Enzymatic Chromatin IP Kits.

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:100
    Immunofluorescence (Immunocytochemistry) 1:400
    Flow Cytometry (Fixed/Permeabilized) 1:800
    Chromatin IP 1:50
    Chromatin IP-seq 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    PRDM14 (E1D5S) XP® Rabbit mAb recognizes endogenous levels of total PRDM14 protein.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with full-length recombinant protein specific to human PRDM14 protein.

    Background

    PR domain zinc finger protein 14 (PRDM14) is a likely protein lysine methyltransferase that is primarily expressed in primordial germ cells and pluripotent embryonic stem cells. It is essential for the establishment and maintenance of primordial germ cells and critical for the maintenance of pluripotency in embryonic stem cells (1-3). PRDM14 represses genes involved in the differentiation of stem cells into various cell lineages, likely via a combination of interactions with TET proteins, the polycomb repressive complex 2 (PRC2), and CBFA2T2 (3-8). In addition, overexpression of PRDM14 in combination with Jarid2 promotes induced pluripotent stem cell (iPSC) formation (9). PRDM14 protein levels are overexpressed in certain cancers, including breast, leukemia (T-ALL), and non-small cell lung cancer (NSCLC) (10-13), and PRDM14 overexpression may serve as a novel prognostic marker in NSCLC (14). Targeting PRDM14 overexpression with a siRNA-based therapy was shown to decrease liver metastasis in a murine pancreatic cancer model, suggesting potential as a therapeutic option for cancers where this protein is abnormally expressed (15).

    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    Alexa Fluor is a registered trademark of Life Technologies Corporation.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.